TABLE OF CONTENTS

LIST OF TABLES .. I
LIST OF FIGURES ... II-X

ABSTRACT .. XI

CHAPTER 1 ... 1-5
1. Introduction

CHAPTER 2 ... 6-47
2. Review of literatures
 2.1. Depression
 2.2. Co-morbidity of depression and diabetes with cognitive dysfunction
 2.3. Drug therapy
 2.4. Diabetes
 2.5. Diabetes and central nervous system
 2.6. Drug therapy
 2.7. Animal models of depression
 2.8. Animal models of diabetes
 2.9. Stinging nettle (Urtica dioica)
 2.9.1. Description
 2.9.2. Phytochemical Studies
 2.9.3. Pharmacology
 2.10. St. John's wort (Hypericum perforatum)
 2.10.1. Description
 2.10.2. Phytochemical Studies
 2.10.3. Pharmacology
 2.11. Fluoxetine (FLX)
 2.12. Rosiglitazone (ROSI)

CHAPTER 3 .. 48
Objective of the study
CHAPTER 4

4. Materials and methods

4.1. Collection, identification and standardization of plant material
 4.1.1. Leaf microscopy
 4.1.2. Powder Analysis

4.2. Determination of Ash values
 4.2.1. Total ash
 4.2.2. Acid insoluble ash
 4.2.3. Water insoluble ash

4.3. Determination of extractive values
 4.3.1. Alcohol soluble extractive
 4.3.2. Water soluble extractive value

4.4. Determination of moisture content

4.5. Extraction

4.6. Phytochemical evaluation
 4.6.1. Detection of alkaloids
 4.6.2. Detection of carbohydrates and glycosides
 4.6.3. Detection of saponins
 4.6.4. Detection of phytosterols
 4.6.5. Detection of phenolic compounds and flavonoids
 4.6.6. Detection of proteins & amino Acids
 4.6.7. Detection of fixed oils & fats
 4.6.8. Detection of gums & mucilage

4.7. Specific chemical test for stinging nettle extract

4.8. High-performance liquid chromatography and liquid chromatography-mass spectrometry
 4.8.1. Identification of scopoletin in UD leaves extract by HPLC
 4.8.2. Identification of active constituents in UD leaves extract by LC-MS analysis
 4.8.3. Identification of hyperforin and hypericin in St. John’s wort extract by HPLC
 4.8.4. Identification of hyperforin and hypericin in St. John’s wort extract by LC-MS

4.9. Animals
4.10. CUMS procedure and drug administration
4.11. STZ induced diabetes and drug treatment
4.12. Behavioural studies
 4.12.1. Forced swim test (FST)
 4.12.2. Tail suspension test (TST)
 4.12.3. Sucrose preference test (SPT)
 4.12.4. Morris water maze task (MWM)
 4.12.5. Passive avoidance step-through (PA) task
 4.12.6. Locomotor activity
 4.12.7. Real-time quantitative reverse transcription PCR
4.13. Immunoblot
 4.14.1. Estimation of blood glucose level
 4.14.2. Estimation of serum insulin level
 4.14.3. Estimation of corticosterone
 4.14.4. Thiobarbituric acid reactive substances (TBARS)
 4.14.5. Plasma nitric oxide (NO)
 4.14.6. Catalase level
 4.14.7. Total thiol level
4.15. In vitro assays on hippocampal slices
4.16. Identification of hyperforin, hypericin and scopoletin on brain homogenate of stressed mice
4.17. Immunofluorescence & Histopathology
4.18. Statistical analysis

CHAPTER 5..69-123
5. Results
 5.1. Standardization of plant materials
 5.1.1. Specific chemical tests for stinging nettle extract
 5.1.2. LC-MS and HPLC analysis
 5.2. Assessment of depressive like behaviour in stressed mice and the effect of UD extract
 5.3. Effect of UD extract on depression mediated cognitive deficit
 5.4. Effect of UD extract on depression mediated locomotor deficit
5.5. Depression mediated insulin resistance and hypercorticosteronemia and the effect of UD
5.6. Effect of UD extract on depression mediated alteration in hippocampal insulin signaling pathway
5.7. The effect of UD extract on depression mediated impairment in Smo-Gli pathway and synaptic plasticity
5.8. Depression mediated alteration in hippocampal and striatal cholinergic system and the effect of UD and FLX
5.9. Effect of UD on depression mediated impairment in ATG and neuronal survival
5.10. Effect of UD extract on CUMS-induced oxidative and nitrative stress
5.11. Accumulation of stinging nettle and St. John's wort constituents on whole brain after CUMS paradigm
5.12. Effect of UD extract on STZ induced hyperglycemia, hypoinsulinemia and insulin resistance
5.13. Effect of UD extract on diabetes mediated alteration in body weight and water intake
5.14. Diabetes mediated depressive like behaviour and motor function deficit and the effect of UD extract
5.15. Effect of UD extract on diabetes mediated cognitive deficit
5.16. Effect of UD extract on hippocampal insulin signaling pathway
5.17. Effect of UD extract on diabetes mediated impairment in hippocampal GLUT4 membrane translocation
5.18. Effect of UD extract on hippocampal cholinergic system
5.19. Effect of UD extract on oxidative stress, inflammation and neuronal survival
5.20. Immunofluorescence study of TNFα on hippocampal section of chronically stressed mice
5.21. Histopathology study on hippocampal section of chronically stressed mice
5.22. Immunofluorescence study of TNFα on hippocampal section of STZ induced diabetic mice
5.23. Histopathology study on hippocampal section of STZ induced diabetic mice
List of Tables

Table 1: Classification of major antidepressant drugs.

Table 2: The major categories of drugs used to control type 2 diabetes.

Table 3: Sequence of oligonucleotides used for qRT-PCR.

Table 4: Ash values (% w/w) of Stinging nettle and Hypericum perforatum.

Table 5: Extractive values (% w/w) of Stinging nettle and Hypericum perforatum.

Table 6: Moisture content in Stinging nettle and Hypericum perforatum.

Table 7: Phytochemical evaluation of Stinging nettle and Hypericum perforatum extracts.
LIST OF FIGURES

Figure 1: Effect of depression on all cause mortality in patients with diabetes.

Figure 2: The complex pathophysiology of cognitive dysfunction during co-morbidity of depression and diabetes.

Figure 3: An overview of Shh signaling. In the absence of Shh ligand the downstream signaling is off (A) and in the presence of Shh the downstream signaling is activated (B).

Figure 4: Comparison of unadjusted mean HbA1c over time among depressed and non-depressed adults with diabetes.

Figure 5: The possible mechanistic contribution of cognitive impairment seen in diabetes mellitus, stress and depression. Hyperglycemia, hypoglycaemia, depression, dyslipidemia and abnormal insulin action have been implicated as major causes of cognitive impairment in diabetic patients, but many other factors, such as those shown in the Figure, are also involved.

Figure 6: An overview on neuronal intracellular signaling of insulin receptor.

Figure 7: Summary of the effects of antidiabetics on the peripheral and central nervous system.

Figure 8: The potential cellular targets of major antidiabetic drugs in the central nervous system.

Figure 9: Parts of stinging nettle plant. Urtica dioica whole plant (A), leaf upper surface (B), leaf lower surface (C) and stem with trichomes (D).

Figure 10: Structure of the some chemical constituents present on stinging nettle.

Figure 11: Parts of Saint John's wort plant. St. John's wort whole plant (A) and flower (B).

Figure 12: Structure of the some chemical constituents present on St. John's wort.

Figure 13: CUS procedure and experimental design- C- cold swim (8°C, 3 min); T- tail pinch (1 min); F- food and water deprivation (24 h); I1- immobilization (3 h); O- overnight illumination; FS- foot shock (20 trials, 0.5 mA, 5.0 sec maximum duration, 1 min intervals); T1- tail pinch (2 min); C1- cold swim (10°C, 5 min); FS1- foot shock (20 trials, 0.5 mA, 5.0...
sec maximum duration, 30 s intervals); I2- immobilization (4 h); T2- tail pinch (3 min); O1- overnight illumination with wet cage; C2- cold swim (6°C, 3 min); I3- immobilization (5 h); OT- overnight illumination with tilted cage.

Figure 14: Experimental design for the effect of UD against STZ induced neurological alterations. UD = *Urtica dioica* extract, STZ = Streptozotocin.

Figure 15: Transverse section of Stinging nettle leaf stained with safranin solution (40X).

Figure 16: Transverse section of St. John's wort (*Hypericum perforatum*) leaf stained with safranin solution and viewed at 10X (A) and 40X (B).

Figure 17: Negative ion LC-MS spectrum of hydro-alcoholic extract of UD leaves showing peak at m/z 153.02 (gentisic acid), m/z 177.02 (esculetin), m/z 191.04 (scopoletin), m/z 301.04 (quercetin) and m/z 609.51 (rutin).

Figure 18: HPLC chromatogram of standard scopoletin (A) and crude hydro-alcoholic extract of UD leaves (B).

Figure 19: Negative ion LC-MS chromatogram of hyperforin (m/z 535.38) (A) and hypericin (m/z 503.08) (B) in hydro-alcoholic extract of St. John’s wort.

Figure 20: Typical HPLC chromatograms of the standard hypericin (CAS 548-04-9) (A), hyperforin (CAS 11079-53-1) (B), 50% methanolic extract of St John’s wort (C), 75% methanolic extract of St John’s wort (D) and 25% methanolic extract of St John’s wort (E) with detection wavelength set at 200-800 nm using PDA detector.

Figure 21: Effect of UD extract on CUMS-induced behavioural alterations in FST (A) and TST (B). Data were mean ± SEM values (n=6). Significant differences: CTRL vs. CUMS; *CUMS vs. CUMS + FLX, CUMS + ROSI, CUMS + HYP and CUMS + UD. *p < 0.05, **p < 0.01, ***p < 0.001. CTRL = control; CUMS = chronic unpredictable mild stress; FLX = fluoxetine; ROSI = rosiglitazone; HYP = *Hypericum perforatum* extract; UD = *Urtica dioica* extract; FST = forced swim test; TST = tail suspension test.

Figure 22: Effect of UD extract on CUMS-induced behavioural alteration in SPT: SPT base line (A), SPT at week one (B), SPT week at two (C) and SPT at week three (D). Data were mean ± SEM values (n=6). Significant differences: CTRL vs. CUMS; *CUMS vs. CUMS + FLX, CUMS + ROSI, CUMS + HYP and CUMS + UD. *p < 0.05, **p < 0.01, ***p < 0.001.
CTRL = control; CUMS = chronic unpredictable mild stress; FLX = fluoxetine; ROSI = rosiglitazone; HYP = *Hypericum perforatum* extract; UD = *Urtica dioica* extract; SPT = sucrose preference test.

Figure 23: Overall effects of CUMS and drug treatment on SPT. Data were mean ± SEM values (n=6). Significant differences: #CTRL vs. CUMS; *CUMS vs. CUMS + UD. **p < 0.01, ***p < 0.001. CTRL = control; CUMS = chronic unpredictable mild stress; FLX = fluoxetine; ROSI = rosiglitazone; HYP = *Hypericum perforatum* extract; UD = *Urtica dioica* extract.

Figure 24: Effect of UD extract on CUMS-induced behavioural alterations in Morris water maze task (A) and probe trial (number of crossings) (B). Data were mean ± SEM values (n=6). Significant differences: #CTRL vs. CUMS; *CUMS vs. CUMS + FLX, CUMS + ROSI, CUMS + HYP and CUMS + UD. *p < 0.05, **p < 0.01, ***p < 0.001. CTRL = control; CUMS = chronic unpredictable mild stress; FLX = fluoxetine; ROSI = rosiglitazone; HYP = *Hypericum perforatum* extract; UD = *Urtica dioica* extract.

Figure 25: Effect of UD extract on CUMS-induced behavioural alteration in PA task: PA task base line (A), PA task at week one (B), PA task at week two (C) and PA task at week three (D). Data were mean ± SEM values (n=6). Significant differences: #CTRL vs. CUMS; *CUMS vs. CUMS + FLX, CUMS + ROSI, CUMS + HYP and CUMS + UD; #CTRL vs. CUMS + UD. *p < 0.05, **p < 0.01, ***p < 0.001. CTRL = control; CUMS = chronic unpredictable mild stress; FLX = fluoxetine; ROSI = rosiglitazone; HYP = *Hypericum perforatum* extract; UD = *Urtica dioica* extract; PA task = passive avoidance step through task.

Figure 26: Overall effects of CUMS and UD treatment on PA task. Data were mean ± SEM values (n=6). Significant differences: #CTRL vs. CUMS; *CUMS vs. CUMS + UD; #CTRL vs. CUMS + UD. *p < 0.05, ***p < 0.001. CTRL = control; CUMS = chronic unpredictable mild stress; UD = *Urtica dioica* extract; PA task = passive avoidance step through task.

Figure 27: Effect of UD extract on CUMS-induced alterations in locomotor activity in actophotometer using bar graph (A) and locomotor performance using line graph (B). Data were mean ± SEM values (n=6). Significant differences: *CTRL vs. CUMS. **p < 0.01. CTRL = control; CUMS = chronic unpredictable mild stress; FLX = fluoxetine; ROSI = rosiglitazone; HYP = *Hypericum perforatum* extract; UD = *Urtica dioica* extract.

Figure 28: Effect of UD extract on CUMS-induced alterations in the level of fasting blood glucose (A), oral glucose tolerance test (B), plasma corticosterone (C) and serum insulin (D).
Data were mean ± SEM values (n=6). Significant differences: ¹CTRL vs. CUMS; ²CUMS vs. CUMS + FLX, CUMS + ROSI, CUMS + HYP and CUMS + UD. ³p < 0.05, ⁴p < 0.01, ⁵p < 0.001. CTRL = control; CUMS = chronic unpredictable mild stress; FLX = fluoxetine; ROSI = rosiglitazone; HYP = *Hypericum perforatum* extract; UD = *Urtica dioica* extract.

Figure 29: Effect of UD extract on CUMS-induced alterations in the mRNA expression of hippocampal PPARγ (A), IR (B), IGF 1r (C), GLP1 (D), IRS1 (E) and IRS2 (F). Data were mean ± SEM values (n=4). Significant differences: ¹CTRL vs. CUMS; ²CUMS vs. CUMS + ROSI and CUMS + UD; ³CUMS + FLX vs. CUMS + UD; ⁴CUMS + HYP vs. CUMS + UD. ⁵p < 0.05, ⁶p < 0.01, ⁷p < 0.001. CTRL = control; CUMS = chronic unpredictable mild stress; FLX = fluoxetine; ROSI = rosiglitazone; HYP = *Hypericum perforatum* extract; UD = *Urtica dioica* extract.

Figure 30: Effect of UD extract on CUMS-induced alterations in the mRNA expression of hippocampal PI3K (A), PKB (B), GLUT4 (C), INSG1 (D) and MAPK1 (E). Data were mean ± SEM values (n=4). Significant differences: ¹CTRL vs. CUMS; ²CUMS vs. CUMS + FLX, CUMS + ROSI, CUMS + HYP and CUMS + UD; ³CTRL vs. CTRL + HYP and CTRL + UD; ⁴CUMS + FLX vs. CUMS + UD; ⁵CUMS + HYP vs. CUMS + UD. ⁶p < 0.05, ⁷p < 0.01, ⁸p < 0.001. CTRL = control; CUMS = chronic unpredictable mild stress; FLX = fluoxetine; ROSI = rosiglitazone; HYP = *Hypericum perforatum* extract; UD = *Urtica dioica* extract.

Figure 31: Effect of UD extract on CUMS-induced alteration in the content of hippocampal GLUT4 membrane protein. Data were mean ± SEM values (n=4). Significant differences: ¹CTRL vs. CUMS; ²CUMS vs. CUMS + ROSI. ⁹p < 0.001. CTRL = control; CUMS = chronic unpredictable mild stress; ROSI = rosiglitazone; UD = *Urtica dioica* extract; GLUT4 = glucose transporter type 4.

Figure 32: Effect of UD on CUMS-induced alterations in hippocampal Shh mRNA (A), Ptc1 mRNA (B), Smo mRNA (C) and Gli1 mRNA (D) expression. Data were mean ± SEM values (n=4). Significant differences: ¹CTRL vs. CUMS; ²CUMS vs. CUMS + HYP and CUMS + UD; ³CTRL vs. CTRL + HYP and CTRL + UD; ⁴CTRL + FLX vs. CTRL + UD; ⁵CTRL + ROSI vs. CTRL + UD; ⁶CUMS + FLX vs. CUMS + UD; ⁷CUMS + ROSI vs. CUMS + UD. ⁸p < 0.05, ⁹p < 0.01, ¹⁰p < 0.001. CTRL = control; CUMS = chronic
unpredictable mild stress; FLX = fluoxetine; ROSI = rosiglitazone; HYP = *Hypericum perforatum* extract; UD = *Urtica dioica* extract.

Figure 33: Effect of UD on CUMS-induced alterations in hippocampal Hhip mRNA (A), cyclin D1 mRNA (B), BDNF mRNA (C) and TrkB mRNA (D) expression. Data were mean ± SEM values (n=4). Significant differences: *CTRL vs. CUMS; *CUMS vs. CUMS + FLX, CUMS + ROSI, CUMS + HYP and CUMS + UD; *CTRL vs. CUMS + HYP. *p < 0.05, **p < 0.01, ***p < 0.001. CTRL = control; CUMS = chronic unpredictable mild stress; FLX = fluoxetine; ROSI = rosiglitazone; HYP = *Hypericum perforatum* extract; UD = *Urtica dioica* extract.

Figure 34: Effect of UD on Gli1 (A) and Ptch1 (B) mRNA expression in hippocampal slices pre-treated with Smo antagonist cyclopamine. Data were mean ± SEM values (n=4). Significant differences: *CTRL vs. Cyc 5µM; *CTRL vs. Pur 1µM, HYP 50µg, HYP 100µg, UD 250µg; *HYP 50µg and UD 125µg vs. HYP 50µg + Cyc 5µM and UD 125µg + Cyc 5µM; *HYP 100µg and UD 250µg vs. HYP 100µg + Cyc 5µM and UD 250µg + Cyc 5µM; *Pur 1µM vs. Cyc 5µM + Pur 1µM, HYP 50µg + Cyc 5µM, HYP 100µg + Cyc 5µM, UD 125µg + Cyc 5µM and UD 250µg + Cyc 5µM. ***p < 0.001. CTRL = control; Cyc = cyclopamine; Pur = purmorphamine; HYP = *Hypericum perforatum* extract; UD = *Urtica dioica* extract.

Figure 35: The effect of UD on CUMS-induced alterations mAChRs expression: mAChR1 mRNA in hippocampus (A), mAChR4 mRNA in hippocampus (B), mAChR1 mRNA in striatum (C) and mAChR4 mRNA in striatum (D). Data were mean ± SEM values (n=4). Significant differences: *CTRL vs. CUMS; *CUMS vs. CUMS + FLX and CUMS + UD; *p < 0.05, **p < 0.01. CTRL = control; CUMS = chronic unpredictable mild stress; FLX = fluoxetine; ROSI = rosiglitazone; HYP = *Hypericum perforatum* extract; UD = *Urtica dioica* extract.

Figure 36: The effect of UD on CUMS-induced alterations in the expression of mAChR1 protein in hippocampus (A), mAChR4 protein in hippocampus (B), mAChR4 protein in striatum (C), AChE protein in hippocampus (D) and ChAT protein in hippocampus (E). Data were mean ± SEM values (n=4). Significant differences: *CTRL vs. CUMS; *CUMS vs. CUMS + UD and CUMS vs. CUMS + FLX. *p < 0.05, **p < 0.01, ***p < 0.001. CTRL = control; CUMS = chronic unpredictable mild stress; UD = *Urtica dioica* extract; FLX = fluoxetine.
Figure 37: Effect of UD on CUMS-induced alterations in the mRNA expression of hippocampal BCL2 (A), AIP2 (B), ATG5 (C) and ATG7 (D). Data were mean ± SEM values (n=4). Significant differences: #CTRL vs. CUMS; *CUMS vs. CUMS + FLX, CUMS + ROSI, CUMS + HYP and CUMS + UD. *p < 0.05, **p < 0.01, ***p < 0.001. CTRL = control; CUMS = chronic unpredictable mild stress; FLX = fluoxetine; ROSI = rosiglitazone; HYP = *Hypericum perforatum* extract; UD = *Urtica dioica* extract.

Figure 38: Effect of UD on CUMS-induced alterations in the mRNA expression of hippocampal iNOS (A), IL6 (B) and TNFα (C). Data were mean ± SEM values (n=4). Significant differences: #CTRL vs. CUMS; *CUMS vs. CUMS + FLX, CUMS + ROSI, CUMS + HYP and CUMS + UD. *p < 0.05, **p < 0.01, ***p < 0.001. CTRL = control; CUMS = chronic unpredictable mild stress; FLX = fluoxetine; ROSI = rosiglitazone; HYP = *Hypericum perforatum* extract; UD = *Urtica dioica* extract.

Figure 39: Effect of UD on CUMS-induced alterations in TBARS level (A), nitric oxide level (B), catalase level (C) and total thiol level (D) in plasma. Data were mean ± SEM values (n=6). Significant differences: #CTRL vs. CUMS; *CUMS vs. CUMS + FLX, CUMS + ROSI, CUMS + HYP and CUMS + UD. *p < 0.05, **p < 0.01, ***p < 0.001. CTRL = control; CUMS = chronic unpredictable mild stress; FLX = fluoxetine; ROSI = rosiglitazone; HYP = *Hypericum perforatum* extract; UD = *Urtica dioica* extract.

Figure 40: HPLC chromatogram of standard scopoletin (A) as well as whole brain homogenate of chronically stressed mice treated with *Urtica dioica* extract (B).

Figure 41: HPLC chromatogram of standard hyperforin (A), hypericin (B) as well as whole brain homogenate of chronically stressed mice treated with St. John's wort extract (C).

Orally administered Stinging nettle extract accumulated as its constituent scopoletin (0.002%) in the brain tissue of mice after the last dose followed by 12 hr fasting (Figure 40).

Figure 42: Effect of UD extract on STZ induced alteration in fasting blood glucose level (A), serum insulin level (B) and oral glucose tolerance test (C). Data were mean ± SEM values (n=6). Significant differences: #CTRL vs. STZ; *STZ vs. STZ + UD50 and STZ + ROSI. *p

Figure 43: Effect of UD extract on STZ induced alteration in body weight (A) and water intake (B). Data were mean ± SEM values (n=6). Significant differences: #CTRL vs. STZ;
STZ vs. STZ + UD50 and STZ + ROSI. **p < 0.01, *p < 0.001. CTRL = control; STZ = streptozotocin; UD50 = *Urtica dioica* extract 50 mg/kg; ROSI = rosiglitazone.

Figure 44: Effect of UD extract on STZ induced depressive like behaviour in forced swim test (A), depressive like behaviour in tail suspension test (B) and locomotor deficit in actophotometer test (C). Data were mean ± SEM values (n=6). Significant differences: #CTRL vs. STZ; *STZ vs. STZ + UD50 and STZ + ROSI. *p < 0.05, **p < 0.01, ***p < 0.001. CTRL = control; STZ = streptozotocin; UD50 = *Urtica dioica* extract 50 mg/kg; ROSI = rosiglitazone.

Figure 45: Effect of UD extract on STZ induced behavioural alteration in Morris water maze task (A), probe trial (B) and passive avoidance step through task (C). Data were mean ± SEM values (n=6). Significant differences: #CTRL vs. STZ; *STZ vs. STZ + UD50 and STZ + ROSI. *p < 0.05, **p < 0.01, ***p < 0.001. CTRL = control; STZ = streptozotocin; UD50 = *Urtica dioica* extract 50 mg/kg; ROSI = rosiglitazone.

Figure 46: Effect of UD extract on diabetes-mediated alterations in the mRNA expression of hippocampal PPARγ (A), IR (B), ILGF 1r (C), GLP1 (D), IRS1 (E) and IRS2 (F). Data were mean ± SEM values (n=4). Significant differences: #CTRL vs. STZ; *STZ vs. STZ + UD50 and STZ + ROSI; #CTRL vs. STZ + UD50 and STZ + ROSI. *p < 0.05, **p < 0.01. CTRL = control; STZ = streptozotocin; UD50 = *Urtica dioica* extract 50 mg/kg; ROSI = rosiglitazone.

Figure 47: Effect of UD extract on diabetes-mediated alterations in the mRNA expression of hippocampal PI3K (A), PKB (B), GLUT4 (C), INSG1 (D) and MAPK1 (E). Data were mean ± SEM values (n=4). Significant differences: #CTRL vs. STZ; *STZ vs. STZ + UD50 and STZ + ROSI. *p < 0.05, **p < 0.01, ***p < 0.001. CTRL = control; STZ = streptozotocin; UD50 = *Urtica dioica* extract 50 mg/kg; ROSI = rosiglitazone.

Figure 48: Effect of UD extract on STZ-induced alterations in the content of hippocampal GLUT4 protein in cytosol (A) and plasma membrane by immunoblot (B). Data were mean ± SEM values (n=4). Significant differences: #CTRL vs. STZ; *STZ vs. STZ + UD and STZ + ROSI. *p < 0.05. CTRL = control; STZ = streptozotocin; UD50 = *Urtica dioica* extract 50 mg/kg; ROSI = rosiglitazone.

Figure 49: *In vitro* stimulation of hippocampal slices by UD and insulin increases the association of GLUT4 membrane protein. Data were mean ± SEM values (n=4). Significant
differences: #Veh vs. Ins; *Ins vs. Ins + LY294002; +UD vs. UD + LY294002. Veh = vehicle; Ins = insulin; UD125 & UD250 = *Urtica dioica* extract 125 µg & 250 µg.

Figure 50: The effect of UD on diabetes mediated alterations in mAChRs expression: mAChR1 mRNA in hippocampus (A), mAChR4 mRNA in hippocampus (B), mAChR1 mRNA in striatum (C) and mAChR4 mRNA in striatum (D). Data were mean ± SEM values (n=4). Significant differences: #CTRL vs. STZ; *STZ vs. STZ + UD50 and STZ + ROSI. *p < 0.05, **p < 0.01. CTRL = control; STZ = streptozotocin; UD50 = *Urtica dioica* extract 50 mg/kg; ROSI = rosiglitazone.

Figure 51: The effect of UD on diabetes mediated alterations in protein expression of mAChR1 in hippocampus (A), mAChR4 in striatum (B), AChE in hippocampus (C) and ChAT in hippocampus (D). Data were mean ± SEM values (n=4). Significant differences: #CTRL vs. STZ; *STZ vs. STZ + UD50 and STZ + ROSI. *p < 0.05, **p < 0.01, ***p < 0.001. CTRL = control; STZ = streptozotocin; UD50 = *Urtica dioica* extract 50 mg/kg; ROSI = rosiglitazone.

Figure 52: The effect of UD on diabetes mediated alterations in the mRNA expression of BDNF (A), TrkB (B) and cyclin D1 (C) in hippocampus. Data were mean ± SEM values (n=4). Significant differences: #CTRL vs. STZ; *STZ vs. STZ + UD50 and STZ + ROSI. **p < 0.01, ***p < 0.001. CTRL = control; STZ = streptozotocin; UD50 = *Urtica dioica* extract 50 mg/kg; ROSI = rosiglitazone.

Figure 53: The effect of UD on diabetes mediated alterations in the mRNA expression of BCL2 (A), AIP2 (B), ATG5 (C), ATG7 (D), iNOS (E), IL6 (F) and TNFα (G) in hippocampus. Data were mean ± SEM values (n=4). Significant differences: #CTRL vs. STZ; *STZ vs. STZ + UD50 and STZ + ROSI. *p < 0.05, **p < 0.01, ***p < 0.001. CTRL = control; STZ = streptozotocin; UD50 = *Urtica dioica* extract 50 mg/kg; ROSI = rosiglitazone.

Figure 54: Effect of UD on diabetes mediated alterations in TBARS level (A), nitric oxide level (B), catalase level (C) and total thiol level (D) in plasma. Data were mean ± SEM values (n=6). Significant differences: #CTRL vs. STZ; *STZ vs. STZ + UD50 and STZ + ROSI. *p < 0.05, **p < 0.01. CTRL = control; STZ = streptozotocin; UD50 = *Urtica dioica* extract 50 mg/kg; ROSI = rosiglitazone.

Figure 55: Effect of UD on CUMS mediated alterations in TNF-α expression using immunofluorescence study. CTRL = control; CUMS = chronic unpredictable mild stress;
FLX = fluoxetine; ROSI = rosiglitazone; HYP = Hypericum perforatum extract; UD = Urtica dioica extract.

Figure 56: Effect of UD on CUMS mediated neuronal damage using histopathology study. CTRL = control; CUMS = chronic unpredictable mild stress; FLX = fluoxetine; ROSI = rosiglitazone; HYP = Hypericum perforatum extract; UD = Urtica dioica extract.

Figure 57: Effect of UD on diabetes induced alterations in TNF-α expression using immunofluorescence study. CTRL = control; STZ = streptozotocin; UD50 = Urtica dioica extract 50 mg/kg; ROSI = rosiglitazone.

Figure 58: Effect of UD on diabetes mediated neuronal damage using histopathology study. CTRL = control; STZ = streptozotocin; UD50 = Urtica dioica extract 50 mg/kg; ROSI = rosiglitazone.

Figure 59: An overview on mechanism of action of UD extract: Shh signaling in normal control mice (A), stressed mice (B), stressed mice treated with UD or HYP extract (C) and normal control mice treated with UD or HYP extract (D).
Abstract
Clinically, depression and diabetes are co-morbid. Diabetes makes the symptoms of depression worse. Depression reduces overall physical and mental health, not only by increasing the risk for diabetes but making diabetic symptoms worse. Both depression and diabetes are the risk factor for cognitive impairment. Cholinergic system, autophagy (ATG), insulin signaling pathway and sonic hedgehog (Shh) pathway are involved in many regulatory processes, including learning and memory. Stinging nettle (*Urtica dioica*, UD) extract has been claimed for its beneficial effects against depression, diabetes and cognition. The present study was performed to evaluate whether chronic unpredictable mild stress (CUMS) or diabetes mediated cognitive deficit is associated with dysfunction in cholinergic system, ATG, insulin signaling and Shh pathway. In addition, standardized UD extract was used to evaluate its effect on CUMS or diabetes mediated neuronal dysfunction. Rosiglitazone, fluoxetine and St. John’s wort were used as standard drugs for comparison. CUMS (3 weeks) and multiple dose of streptozotocin (STZ) (50 mg/kg, i.p. for 5 consecutive days) resulted in depressive like behaviour, cognitive impairments and hypolocomotion in mice. CUMS induced insulin resistance and hypercorticosteronemia in mice. CUMS and diabetes impaired insulin signaling pathway, ATG and muscarinic cholinergic system in the hippocampus. In addition, CUMS impaired Smoothened (Smo)-Glioma associated oncogene-1 (Gli1) pathway in the hippocampus. CUMS and diabetes downregulated muscarinic cholinergic receptor-4 (mAChR4) expression in striatum but not in hippocampus. Both CUMS and diabetes were associated with oxidative stress, inflammation and apoptosis. Chronic UD treatment (50 mg/kg, p.o.) significantly reverted CUMS and diabetes mediated cognitive impairment, depressive like behaviour and insulin resistance. UD reduced hypercorticosteronemia in stressed mice. Chronic UD administration modulated insulin signaling pathway, ATG and muscarinic cholinergic system in the hippocampus of chronically stressed and diabetic mice. Chronic UD administration effectively modulated hippocampal Smo-Gli1 pathway in stressed mice. UD treatment significantly reduced hyperglycemia, body weight loss and polydypsia in diabetic mice. UD administration significantly ameliorated hippocampal glucose transporter-4 (GLUT4) membrane translocation in diabetic but not in stressed mice. UD administration did not modulate mAChR4 expression in striatum and hypolocomotion. Chronic UD administration attenuated oxidative stress, inflammation and apoptosis in stressed and diabetic mice. These results suggest that chronic administration of UD extract might prove to be effective for depression and diabetes related neurological disorders.