CONTENTS

Abbreviations

Abstract

CHAPTER 1

INTRODUCTION

1.1 NK cells: An Overview

1.2 Early state of NK cell development

1.3 Phenotypic and genotypic characteristics of NK cells.
   1.3.1 Identification of NK cells
   1.3.2 Surface phenotype of human NK cells
   1.3.2.1 FcR (CD16) Antigen
   1.3.2.2 NKH-1/leu-19 antigen (CD56)
   1.3.2.3 HNK-1/leu-7 antigen (CD57)
   1.3.2.4 CD11/CD18 antigens and Myelomonocytic antigens

1.4 Activation and effector mechanisms of NK cells
   1.4.1 Sensitivity of target cells to NK cell-mediated killing
   1.4.2 NK cell receptors
   1.4.3 Mechanisms of cytotoxicity
   1.4.4 Regulation of NK cell cytotoxic activity and proliferation
   1.4.5 Production of lymphokines by NK cells

1.5 NK cells and adaptive immunity
   1.5.1 Immunoregulatory role of NK cells on B cell response
   1.5.2 Immunoregulatory role of NK cells on T cell response
CHAPTER 2

MATERIALS & METHODS

2.1 MATERIALS

2.1.1 Animals and tumors
2.1.2 Reagents
2.1.3 Fine Chemicals
2.1.4 Antibodies (primary)
2.1.5 Antibodies (secondary)
2.1.6 Cell lines
2.1.7 Culture Medium
2.1.8 Serum
2.1.9 Antibiotics
2.1.10 Radio active Isotopes
2.1.11 Lectins

2.2 METHODS

2.2.1 Purification of anti AK-5 antibody
2.2.2 Preparation of splenocytes and their fractionation
2.2.3 Fixation of AK-5 cells
2.2.4 Pretreatment of effector cells with fixed AK-5 cells
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.5.1</td>
<td>$^{51}$Cr-release assay</td>
<td>27</td>
</tr>
<tr>
<td>2.2.5.2</td>
<td>Cytotoxicity assays</td>
<td>28</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Enzyme-linked immunofiltration assay (ELIFA)</td>
<td>29</td>
</tr>
<tr>
<td>2.2.7</td>
<td>Analysis of NK cell markers by flow cytometry</td>
<td>29</td>
</tr>
<tr>
<td>2.2.8</td>
<td>Flow cytometric analysis of apoptosis</td>
<td>29</td>
</tr>
<tr>
<td>2.2.9</td>
<td>MTT Colorimetric Assay</td>
<td>29</td>
</tr>
<tr>
<td>2.2.10</td>
<td>TNF-α Bioassay</td>
<td>30</td>
</tr>
<tr>
<td>2.2.11</td>
<td>$^3$H Thymidine Incorporation Assay</td>
<td>30</td>
</tr>
<tr>
<td>2.2.12</td>
<td>Cell adhesion assay</td>
<td>31</td>
</tr>
<tr>
<td>2.2.13</td>
<td>Estimation of proteins</td>
<td>31</td>
</tr>
<tr>
<td>2.2.14</td>
<td>Sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE)</td>
<td>32</td>
</tr>
<tr>
<td>2.2.15</td>
<td>Western blotting</td>
<td>33</td>
</tr>
<tr>
<td>2.2.16</td>
<td>Isolation of plasmid DNA</td>
<td>33</td>
</tr>
<tr>
<td>2.2.17</td>
<td>Estimation of DNA and RNA</td>
<td>34</td>
</tr>
<tr>
<td>2.2.18</td>
<td>Elution of DNA fragments from agarose gels by Gene clean</td>
<td>34</td>
</tr>
<tr>
<td>2.2.19</td>
<td>Agarose gel electrophoresis</td>
<td>35</td>
</tr>
<tr>
<td>2.2.20</td>
<td>Northern analysis</td>
<td>35</td>
</tr>
<tr>
<td>2.2.20.1</td>
<td>Isolation of total RNA</td>
<td>35</td>
</tr>
<tr>
<td>2.2.20.2</td>
<td>Northern transfer and hybridization</td>
<td>36</td>
</tr>
<tr>
<td>2.2.20.3</td>
<td>Random priming</td>
<td>37</td>
</tr>
<tr>
<td>2.2.20.4</td>
<td>Reverse-transcription (RT) and PCR</td>
<td>37</td>
</tr>
<tr>
<td>2.2.22</td>
<td>List of primers used in the study</td>
<td>39</td>
</tr>
<tr>
<td>2.2.23</td>
<td>Statistical analysis</td>
<td>39</td>
</tr>
</tbody>
</table>
CHAPTER 3

Target cell induced anergy in natural killer cell: suppression of cytotoxic function

3.1 INTRODUCTION

3.2 RESULTS

3.2.1 NK cell cytotoxicity after co-culture with fixed tumor cells

3.2.2 Purified NK cells undergo deactivation following co-culture with fixed AK-5 cells

3.2.3 Effect of fixed AK-5 cells on the cytotoxic activity of immune NK cells

3.2.4 Effect of fixatives used for fixation of AK-5 cells on NK cell deactivation

3.2.5 Production of soluble molecules after co-culture of NK cells and tumor cell

3.2.6 TNF-α secretion by splenocytes after coculture with fixed AK-5 cells

3.2.7 Western blot analysis of TNF-α secretion by NK cells

3.2.8 Antigen dose regulated TNF-α secretion by purified NK cells

3.2.9 Kinetics of TNF-α secretion by tumor antigen

3.2.10 Role of TNF-α secretion in suppression of NK cell function

3.2.11 Reactivation of anergised NK cells by IL-2 and IFN-γ

3.2.12 Induction of apoptosis in anergised NK cells

3.2.13 Role of endogenous TNF-α secretion in the initiation of apoptosis

3.2.14 Upregulation of CD95 in NK cells treated with tumor antigen

3.2.15 Blocking of CD95 upregulation in NK cells by anti TNF-α antibody

3.2.16 Status of NK cell activation markers

3.3 DISCUSSION
CHAPTER 4

Target cell induced activation of NK cells in vitro: Cytokine production and enhancement of cytotoxic function

4.1 INTRODUCTION

4.2 RESULTS

4.2.1 Fixed tumor cell mediated activation of NK cells in splenocytes

4.2.2 Treatment of splenocytes with fixed tumor cells caused the secretion of Th1 cytokines

4.2.3 Effect of cytokine-specific neutralizing antibodies on the activation of NK cells

4.2.4 NKT cells are the main effectors in cytotoxicity function

4.2.5 Role of co-stimulatory molecules in the activation of NK cells

4.2.6 Inhibition of NK cell cytotoxicity by anti LFA-1 and anti ICAM-1 antibodies

4.2.7 Analysis of perforin and Fas-L (CD95L) expression by immunofluorescence and Northern analysis

4.2.8 Signal transduction mechanism utilised by fixed AK-5 cells to activate NK cell cytotoxic function

4.2.8.1 Phosphorylation

4.2.8.2 Tyrosine phosphorylation of NK cells after interaction with fixed tumor cells

4.2.8.2.1 Using anti-phosphotyrosine (Promega)

4.2.8.2.2 Using anti-phosphotyrosine (hybridoma)
4.2.9 Analysis of CD25, CD16, iNOS, FasL and Vav-1 expressions by fixed AK-5 cell treated NK cells

4.2.10 NK and T cell population in splenocytes are enough to activate NK cell cytotoxic function following treatment with fixed tumor cells

4.2.11 Effect of fixed tumor cells on purified NK and NKT cell cytotoxicity

4.2.12 Role of T lymphocytes in NK cell activation

4.2.13 Role of cytokines in NK cell activation

4.2.14 Effect of cytokine specific neutralizing antibodies on NK cell activation

4.2.15 Role of preactivated NK cells on naive T cells

4.2.16 Detection of RT16 (MHC-I) transcript in AK-5 tumor cells

4.2.17 T-cell proliferation

4.2.18 Status of NK cell activation markers

4.2.19 Activated NK cell mediated nitric oxide production and iNOS expression

4.2.21 Effect of anti LFA-1 and anti ICAM-1 on cell adhesion

4.3 DISCUSSION

CHAPTER 5

Regulation of NK cell function by dose of tumor transplanted in peritoneum

5.1 INTRODUCTION

5.2 RESULTS

5.2.1 NK cell cytotoxicity after i.p. transplantation of AK-5 cells

5.2.1.1 Inoculation of $10^4$ AK-5 cells per animal

5.2.1.2 Inoculation of $10^5$ AK-5 cells per animal
5.2.1.3 Inoculation of $10^6$ AK-5 cells per animal

5.2.1.4. Inoculation of $10^7$ AK-5 cells per animal

5.2.2 NKT cell cytotoxicity after inoculation of AK-5 cells

5.2.3 AK-5 tumor cell dose modulates the ratio of NK and NKT cells

5.2.4 Cytokine levels in serum and ascitic fluid of tumor rejectors

and non-rejectors

5.2.5 Anti-IFN-γ and anti IL-12 injections shortened the survival time of animals

5.2.6 Expression of CD95-L by AK-5 cells

5.2.7 Expression of CD95 and perforin by NK cells

5.3 DISCUSSION

Summary of results

REFERENCES

LIST OF PUBLICATIONS