TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td></td>
<td>iv</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td></td>
<td>xviii</td>
</tr>
<tr>
<td>LIST OF ABBREVIATIONS</td>
<td></td>
<td>xxii</td>
</tr>
<tr>
<td>1.</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>1.1.</td>
<td>WIRELESS SENSOR NETWORKS</td>
<td>1</td>
</tr>
<tr>
<td>1.2.</td>
<td>DESIGN CHALLENGES OF WIRELESS SENSOR NETWORKS</td>
<td>2</td>
</tr>
<tr>
<td>1.3.</td>
<td>NEED FOR POWER AWARE ROUTING IN WIRELESS SENSOR NETWORKS</td>
<td>3</td>
</tr>
<tr>
<td>1.3.1.</td>
<td>Robustness</td>
<td>5</td>
</tr>
<tr>
<td>1.3.2.</td>
<td>Scalablity</td>
<td>5</td>
</tr>
<tr>
<td>1.3.3.</td>
<td>Resources constrained at each sensor node</td>
<td>5</td>
</tr>
<tr>
<td>1.3.4.</td>
<td>Energy-efficiency</td>
<td>6</td>
</tr>
<tr>
<td>1.4.</td>
<td>ROUTING CHALLENGES IN WIRELESS SENSOR NETWORKS</td>
<td>6</td>
</tr>
<tr>
<td>1.5.</td>
<td>OBJECTIVES OF THE THESIS</td>
<td>10</td>
</tr>
<tr>
<td>1.6.</td>
<td>ORGANIZAION OF THE THESIS</td>
<td>14</td>
</tr>
<tr>
<td>2.</td>
<td>LITERATURE SURVEY</td>
<td>17</td>
</tr>
<tr>
<td>2.1.</td>
<td>WIRELESS SENSOR NETWORK ARCHITECTURE AND CHARACTERISTICS</td>
<td>17</td>
</tr>
</tbody>
</table>
2.1.1. Classification of wireless sensor networks

2.1.2. Design metrics

2.2. WIRELESS HETEROGENEOUS SENSOR NETWORKS

2.3. ROUTING IN WIRELESS SENSOR NETWORKS

2.3.1. Multipath routing in WSN

2.4. POWER AWARE ROUTING IN WIRELESS SENSOR NETWORKS

2.5. BEACONLESS ROUTING IN WIRELESS SENSOR NETWORKS

2.6. GEOGRAPHIC ROUTING PROTOCOLS IN WIRELESS SENSOR NETWORKS

3. GEOGRAPHIC RELAY REGION BASED POWER AWARE ROUTING SCHEME

3.1. INTRODUCTION

3.2. EXISTING ROUTING METHODS IN WIRELESS SENSOR NETWORKS

3.3. THE PROPOSED GEOGRAPHIC RELAY REGION BASED POWER AWARE ROUTING SCHEME

3.3.1. Energy model

3.3.2. Network model

3.3.3. Behavior of power-adjusted transmission

3.3.4. Geographic relay region based power aware routing

3.3.4.1. Relay region
3.3.4.2. Greedy mode...51
3.3.4.3. Delay function..51
3.3.4.4. Angular relay mode.......................................52
3.3.4.5. Calculation of quality value..............................53
3.3.5. Theoretical analysis of GRRR.................................56
 3.3.5.1. Guaranteed delivery.......................................56
 3.3.5.2. Extension to lossy wireless sensor networks...........57
3.3.6. Simulation and results..58
 3.3.6.1. Simulation study...58
3.3.7. Algorithms used for comparison..............................59
3.3.8. Results and discussion.......................................60
 3.3.8.1. Performance of GRRR in random walk scenario........62
 3.3.8.2. Performance of GRRR in random sleep wake up scenario...68
3.4. SUMMARY OF THE CONTRIBUTIONS.............................74
4. A POWER AWARE DATA DIFFUSION SCHEME.....................76
 4.1. INTRODUCTION..76
 4.2. NEED FOR A POWER AWARE DATA DIFFUSION SCHEME IN WIRELESS SENSOR NETWORKS..................77
 4.3. THE PROPOSED POWER AWARE DATA DIFFUSION SCHEME USING DISCRETE RTS/CTS FUNCTION........81
 4.3.1. Optimal hop circle.......................................83
 4.3.2. Power aware forwarding mode..........................84
4.3.3. Power aware recovery mode ..85
4.3.4. Theoretical analysis ..88
 4.3.4.1. Progress and advance88
 4.3.4.2. Proof of guaranteed forward under different efficiencies ..89
 4.3.4.3. Extension to lossy sensor networks91
4.4. SIMULATION AND RESULTS ...91
 4.4.1. Simulation study ...91
 4.4.2. Algorithm used for comparison92
 4.4.3. Results and discussion94
 4.4.3.1. Performance analysis of PADDs scheme in random walk scenario ..95
 4.4.3.2. Performance analysis of PADDs scheme in random sleep wake up scenario100
4.5. SUMMARY OF THE CONTRIBUTIONS107
5. AN INDIVIDUAL NODE DELAY BASED EFFICIENT POWER AWARE ROUTING PROTOCOL FOR WIRELESS HETEROGENEOUS SENSOR NETWORKS ..109
 5.1. INTRODUCTION ...109
 5.1.1. Heterogeneous model for wireless sensor network112
 5.1.1.1. Types of heterogeneous resources112
 5.1.1.2. Heterogeneous impact on the wireless heterogeneous sensor networks112
5.1.2. Need for energy efficient power-aware routing in WHSNs…113

5.2. NETWORK PRELIMINARIES………………………………..116

5.2.1. Definitions of neighbor relationships………………………..116

5.2.2. Energy model……………………………………………..…117

5.2.3. Network model……………………………………………...118

5.3. THE PROPOSED INDIVIDUAL NODE DELAY BASED EFFICIENT POWER AWARE ROUTING PROTOCOL……………………………………………………118

5.4. SIMULATION AND RESULTS……………………………….124

5.4.1. Definition of progress and advance………………………….125

5.4.2. Guaranteed data delivery from source to sink………………. 125

5.4.3. Extension to lossy sensor networks………………………….126

5.4.4. Simulation study…………………………………………….127

5.4.5. Algorithm used for comparison……………………………..128

5.4.6. Results and discussion………………………………………130

5.4.6.1. Performance analysis of proposed IDEPARP in static scenario…………………………………………..130

5.4.6.2. Performance analysis of proposed IDEPARP in dynamic scenario………………………………...135

5.5. SUMMARY OF THE CONTRIBUTIONS…………………….142

6. REQUEST-RESPONSE BASED POWER-AWARE ROUTING PROTOCOL FOR WIRELESS HETEROGENEOUS SENSOR NETWORKS……………………………………………………143
6.1. INTRODUCTION...143

6.2. NEED FOR POWER-AWARE ROUTING PROTOCOL FOR WIRELESS HETEROGENEOUS SENSOR NETWORKS......145

6.3. NETWORK PRELIMINARIES..147

6.3.1. Neighbor relationships in wireless heterogeneous sensor network..147

6.3.2. One-hop and two-hop receiver model and limitations of other models..147

6.3.3. Network model..147

6.3.4. Modified first order radio model for energy consumption.....148

6.4. REQUEST-RESPONSE BASED POWER AWARE ROUTING PROTOCOL FOR WIRELESS HETEROGENEOUS SENSOR NETWORKS...149

6.4.1. Handshake part...149

6.4.2. Election part...151

6.4.3. Corona based request message..155

6.5. SIMULATION SETTINGS..155

6.5.1. Results and discussion..157

6.5.1.1. Performance analysis of proposed RRPARP in random walk...158

6.5.1.2. Performance analysis of proposed RRPARP in random sleep wake up...162

6.6. SUMMARY OF THE CONTRIBUTIONS...............................168