CONTENTS

<table>
<thead>
<tr>
<th>Contents</th>
<th>Page Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACKNOWLEDGEMENT</td>
<td>iii</td>
</tr>
<tr>
<td>ABSTRACT</td>
<td>v</td>
</tr>
<tr>
<td>LIST OF FIGURES</td>
<td>xii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>xiii</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>xiv</td>
</tr>
</tbody>
</table>

CHAPTERS

1. **LITERATURE REVIEW AND SCOPE OF WORK**

1.1 INTRODUCTION

1.2 WORLD CLASS MANUFACTURING

1.3 SMALL AND MEDIUM SCALE INDUSTRY

1.4 SMALL AND MEDIUM SCALE PRINTING INDUSTRY

1.5 LITERATURE REVIEW

1.5.1 World Class Manufacturing

1.5.2 Literature Review On Offset Printing

1.5.3 Scope of Work

1.6 PROPOSED PROJECT

1.6.1 Problem Definition And Objectives

1.6.2 Objectives of Research work

2. **OFFSET PRINTING PROCESS**

2.1 INTRODUCTION

2.2 PRINCIPLE OF OFFSET PRINTING

2.2.1 Components of Sheetfed Offset Machine

2.3 VARIABLES AFFECTING PRINT QUALITY
2.3.1 Ink
2.3.2 Plate
2.3.3 Paper

2.4 INKING SYSTEM OF OFFSET PRINTING MACHINE

2.4.1 Ink Roller Setting
2.4.2 Setting the Form Roller to Oscillator
2.4.3 Effect of Temperature on Printing Performance

2.5 PRINT QUALITY PARAMETERS

2.5.1 Density
2.5.2 Dot Gain
2.5.3 Print Contrast
2.5.4 Trapping

2.6 QUALITY TOOLS FOR PRINT MEASUREMENT

2.6.1 Elements Of Control Strip
2.6.2 Densitometer

2.7 CLOSURE

3 RESEARCH METHODOLOGY

3.1 INTRODUCTION

3.2 DESIGN OF EXPERIMENTS

3.2.1 Taguchi Philosophy
3.2.2 Quality Characteristics
3.2.3 Orthogonal Array
3.2.4 Signal to Noise (S/N) Ratio
3.2.5 Analysis Of Variance (ANNOVA)

3.3 ANALYTICAL HIERARCHY PROCESS

3.3.1 Stages of analytical hierarchy processes

3.4 GENETIC ALGORITHM

3.4.1 Introduction to genetic algorithm
3.4.2 Comparison of Natural GA terminology
3.4.3 Need of GA
3.4.4 Methodology of GA 34
3.5 COMPUTATIONAL FLUID DYNAMICS 37
3.6 CLOSURE ... 39

4 EXPERIMENTATION - I 40
4.1 SCOPE OF EXPERIMENTATION 40
4.2 DOE EXPERIMENTATION 40
4.2.1 Specimen Preparation 40
4.3 NUMERICAL ANALYSIS 46
4.3.1 Mean change in print density 47
4.3.2 S/N Ratio 48
4.4 ANALYSIS OF VARIANCE (ANOVA) 50
4.5 RESPONSE SURFACE ANALYSIS 57
4.6 CLOSURE .. 59

5 VALIDATION OF EXPERIMENTATION - I 60
5.1 VALIDATION OF DOE RESULT BY AHP TECHNIQUE ... 60
5.2 GENETIC ALGORITHM BASED OPTIMIZATION 68
5.2.1 INTERFERENCE FROM GRAPHICAL RESULT 69
5.3 CLOSURE .. 70

6 EXPERIMENTATION - II 71
6.1 INTRODUCTION 71
6.2 HEAT DISSIPATION IN CONVENTIONAL PROCESS .. 73
6.3 EXPERIMENTAL SETUP WITH MODIFIED ROLLER .. 74
6.4 CLOSURE .. 77

7 CFD VALIDATION OF EXPERIMENTATION - II 78
7.1 INTRODUCTION 78
7.2 NUMERICAL MODELLING 78
7.3 GOVERNING EQUATIONS 79
7.4 GEOMETRIC CREATION AND MESH GENERATION .. 80