INTRODUCTION
Introduction

The cornea, the conjunctiva consisting of bulbar, fornical and palpebral conjunctiva and the intervening transition area, known as limbus, comprise the tissues at the ocular surface. Functionally, all three regions of the epithelium support the tear film and protect against fluid loss and pathogen entrance. The limbus, a narrow 1.5-2mm band of tissue straddling the cornea and the conjunctiva, is the site of the corneal epithelial stem cells. Stem cells are responsible for the ultimate cellular replacement and tissue regeneration in all self-renewing tissue.

Damage to these cells from certain systemic inflammatory diseases or primary ocular diseases or trauma may lead to various Ocular Surface Disorders. Loss of stem cells may result from chemical / thermal injuries Stevens-Johnson syndrome, multiple surgeries or cryotherapies to the limbal region, contact lens-induced keratopathy or toxic effects from lens-cleaning solutions, neurotrophic keratopathy (neuronal or ischemic), peripheral corneal ulcerative keratitis, pterygium and pseudopterygium. The result is breakdown of the ocular surface and corneal epithelial defects that may become chronic if the normal epithelialization process fails. Conjunctival epithelium may replace corneal epithelium resulting in loss of corneal transparency. Chronic inflammation may then occur characterized by neovascularization, corneal scarring and opacification,
corneal thinning, and possible corneal perforation, all of which may lead to loss of visual acuity.

Ocular surface disorders caused by various conditions of the cornea and conjunctiva are still difficult to treat. Persistent corneal epithelial defect, or irregular surface of the cornea from bullous or band keratopathy can cause not only irritation and pain to the patient but also reduce the protective mechanism and lead to the infection of the cornea. Current medical treatments include topical artificial tears, lubricants, and experimental trials of fibronectin, insulin-like growth factor type I and substance P, or nerve growth factor. When these medical therapies fail, patching, scleral contact lens, cyanoacrylate glue, conjunctival flap, and tarsorrhaphy are considered. Punctal occlusion may be beneficial. Therapeutic contact lenses have been shown in some cases to be effective therapy for persistent epithelial defect but carry the increased risk of infection. Conjunctival flap will change the clear cornea to vascularization. More invasive surgical therapies include temporary or permanent tarsorrhaphy but its efficacy is limited by the ability of the corneal wound to heal, and affects the appearance of the patient. Lysis adhesion from the scar and symblepharon or wide excision of the conjunctival mass still needs a good graft in terms of ease of application, good cosmetic results, and prevention of tissue adhesion.
Recently, amniotic membrane transplantation (AMT) has been successfully used to treat persistent corneal epithelial defects and ulcers from different causes, and for corneal and conjunctival surface reconstruction for a variety of ocular surface disorders. Use of human amniotic membrane for transplantation may be an alternative or adjunctive therapy. In comparison with other biologic tissues used as reconstructive grafts, the amniotic membrane presents some undoubted advantages; It is thinner and better tolerated by the patient and it never becomes necrotic; It is not a substitute of the conjunctiva, but rather a substrate where conjunctival cells migrate and regenerate, forming new and healthy tissue.

Over the last several years there has been a tremendous and growing demand for amniotic tissue to treat conditions such as Stevens-Johnson disease, ocular surface disorders, chemical and thermal burns, deep corneal ulcers, pterygium, bullous keratopathy and other ophthalmic indications. Recently, amniotic membrane transplantation (AMT) has been used in many different types of reconstructive surgery. AMT became important because of its ability to diminish the occurrence of adhesions and scarring, its ability to enhance wound healing and epithelialisation, and its antimicrobial potential

The transplantation of human amniotic membrane has been added to the therapeutic armamentarium. Certain characteristics make the
amniotic membrane ideally suited to its application in ocular surface reconstruction. It can be easily obtained and its availability is nearly unlimited.

In this study, the effectiveness of amniotic membrane transplantation for various ocular surface disorders has been studied prospectively.