CONTENTS

Introduction
- Atherosclerosis and coronary heart disease
- Lipoprotein(a), a genetic risk factor of atherosclerosis
- Apolipoprotein(a), the distinguishing protein of Lipoprotein(a)
- Apolipoprotein(a)'s similarity with plasminogen and its evolution
- Proposed role of apolipoprotein(a) in pathogenesis of atherosclerosis
- Characterisation of 5' flanking region of apolipoprotein(a) gene and its transcriptional regulation
- Summary of work done in the laboratory

Materials
- Chemicals
- Enzymes, bacterial strains and mammalian cell lines
- Vectors and primers

Methods
- Preparation of competent cells and transformation
- Plasmid isolation
- Preservation of cultures and clones
- Revival of mammalian cell lines
- Maintenance of mammalian cell lines and cell culture
- Preparation of nuclear extract
- Transfection
- Luciferase assay
- DNA quantitation
- Agarose gel electrophoresis
- Polyacrylamide gel electrophoresis: native, denaturing and SDS-PAGE
- Restriction enzyme digestion
- DNA elution from agarose gel
- DNA elution from polyacrylamide gel
- Polymerase chain reaction amplification
- Ligation
- Colony hybridization and blue/white screening
- 5' end labelling of synthetic oligonucleotide
- End labelling by Klenow filling reaction
- Body-labelling by PCR
- Purification of radiolabelled probe
- DNA sequencing: Sanger's and Maxam-Gilbert method
- DNase I footprinting assay
- Electrophoretic mobility shift assay
- UV Cross-linking
- South-Western blot assay
- Purification of the binding factor(s) by biotin streptavidin
Results

(-716 to -314) region upregulates human apo(a) gene
Six imperfect dyad symmetry elements found in the positive regulatory region (-716 to -314)
A HeLa-specific protein binds to a synthetic DNA fragment containing DSE4 region (-640 to -616)
Characterisation of the cis-element binding aTR
A single polypeptide of 107,000 Da size is involved in binding to the (-643 to -616) fragment
The (-643 to -616) fragment represses luciferase reporter gene expression under heterologous SV40 promoter
HepG2-specific factors bind to the (-716 to -616) fragment
Separation of binding factors on SDS-PAGE renders inability to bind to the (-716 to -616) region
Characterisation of cis-element binding to the HepG2 specific trans-acting factors
More than one DSE is required in DNA probe for the formation of DNA-protein complexes with HepG2-specific factors
Cross-linking of DNA-protein complexes by UV irradiation
The fragment 'b' (-706 to -616) forms the most stable DNA-protein complex with HepG2-specific trans-acting factors
Purification of the trans-acting factor(s) using biotinylated cis-element and streptavidin magnetic beads
Purification of the UV cross-linked DNA-protein complex using biotinylated fragment 'a', HepG2 nuclear extract and streptavidin magnetic beads

Discussion

Eukaryotic transcriptional regulation
Proposed model of transcriptional activation of apo(a) gene by four HepG2-specific factors
Tissue-specific repression of apo(a) gene by a Hela-specific factor

Bibliography

Appendix