Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement</td>
<td>iv</td>
</tr>
<tr>
<td>Abstract</td>
<td>v</td>
</tr>
<tr>
<td>List of Figures</td>
<td>xiv</td>
</tr>
<tr>
<td>List of Tables</td>
<td>xxi</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>xxviii</td>
</tr>
<tr>
<td>1. Introduction</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Motivation</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Aims and objectives</td>
<td>3</td>
</tr>
<tr>
<td>1.4 Scope of the thesis</td>
<td>4</td>
</tr>
<tr>
<td>1.5 Outline of the thesis</td>
<td>4</td>
</tr>
<tr>
<td>2. Literature Survey</td>
<td></td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>5</td>
</tr>
<tr>
<td>2.2 Time Series</td>
<td>6</td>
</tr>
<tr>
<td>2.2.1 Linearity</td>
<td>6</td>
</tr>
<tr>
<td>2.2.2 Piecewise Chaos</td>
<td>7</td>
</tr>
<tr>
<td>2.2.3 Random Noise</td>
<td>8</td>
</tr>
<tr>
<td>2.2.4 Artificial Neural Networks</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Rainfall forecasting</td>
<td>12</td>
</tr>
<tr>
<td>2.3.1 Empirical Models</td>
<td>14</td>
</tr>
<tr>
<td>2.3.2 Physical Models</td>
<td>16</td>
</tr>
<tr>
<td>2.3.3 ANN Models</td>
<td>18</td>
</tr>
<tr>
<td>2.4 Conclusion</td>
<td>18</td>
</tr>
<tr>
<td>3. Artificial Neural Network</td>
<td></td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>19</td>
</tr>
</tbody>
</table>
3.2 Artificial Neural Network

3.2.1 Multilayer Perceptron

3.2.2 Radial Basis Function

3.2.3 Time Lagged Recurrent Networks

3.3 Learning Rules

3.3.1 Momentum

3.3.2 Delta Bar Delta Rule

3.3.3 Levenberg Marquardt

3.3.4 Conjugate Gradient

3.3.5 Quickpop

3.4 Activation Functions

3.4.1 tanh

3.4.2 Linear tanh

3.4.3 Sigmoid

3.4.4 Linear Sigmoid

3.5 Cross Validation

3.6 Performance Measures

3.6.1 Mean Squared Error (MSE)

3.6.2 Normalize Mean Squared Error (NMSE)

3.6.3 Percentage Error (% Error)

3.6.4 Correlation Coefficient (r)

3.7 Conclusion

4. Rainfall forecasting using multilayer perceptron

4.1 Introduction

4.2 Data Representation
4.3 Procedure for Experimentation

4.4 Experimental Results, Analysis and Discussions

4.4.1 Results of MLP using momentum learning rule with tanh activation function

4.4.2 Results of MLP using momentum learning rule with linear tanh activation function

4.4.3 Results of MLP using momentum learning rule with sigmoid activation function

4.4.4 Results of MLP using momentum learning rule with linear sigmoid activation function

4.4.5 Results of MLP using delta bar delta learning rule with tanh activation function

4.4.6 Results of MLP using delta bar delta learning rule with linear tanh activation function

4.4.7 Results of MLP using delta bar delta learning rule with sigmoid activation function

4.4.8 Results of MLP using delta bar delta learning rule with linear sigmoid activation function

4.4.9 Results of MLP using Levenberg Marquardt learning rule with tanh activation function

4.4.10 Results of MLP using Levenberg Marquardt learning rule with linear tanh activation function

4.4.11 Results of MLP using Levenberg Marquardt learning rule with sigmoid activation function

4.4.12 Results of MLP using Levenberg Marquardt learning rule with linear sigmoid activation function

4.4.13 Results of MLP using conjugate gradient learning rule with tanh activation function

4.4.14 Results of MLP using conjugate gradient learning rule with linear tanh activation function

4.4.15 Results of MLP using conjugate gradient learning rule with sigmoid activation function

4.4.16 Results of MLP using conjugate gradient learning rule with linear sigmoid activation function
4.4.17 Results of MLP using quickprop learning rule with tanh activation function

4.4.18 Results of MLP using quickprop learning rule with linear tanh activation function

4.4.19 Results of MLP using quickprop learning rule with sigmoid activation function

4.4.20 Results of MLP using quickprop learning rule with linear sigmoid activation function

4.4.21 Production Report of the MLP with Levenberg Marquardt with tanh activation function

4.5 Conclusions

5. Rainfall forecasting using Radial Basis Function

5.1 Introduction

5.2 Procedure for Experimentation

5.3 Experimental Results, Analysis and Discussions

5.3.1 Results of RBF using momentum learning rule with tanh activation function

5.3.2 Results of RBF using momentum learning rule with linear tanh activation function

5.3.3 Results of RBF using momentum learning rule with sigmoid activation function

5.3.4 Results of RBF using momentum learning rule with linear sigmoid activation function

5.3.5 Results of RBF using delta bar delta learning rule with tanh activation function

5.3.6 Results of RBF using delta bar delta learning rule with linear tanh activation function

5.3.7 Results of RBF using delta bar delta learning rule with sigmoid activation function

5.3.8 Results of RBF using delta bar delta learning rule with linear sigmoid activation function

5.3.9 Results of RBF using Levenberg Marquardt learning rule with tanh activation function
5.3.10 Results of RBF using Levenberg Marquardt learning rule with linear tanh activation function

5.3.11 Results of RBF using Levenberg Marquardt learning rule with sigmoid activation function

5.3.2 Results of RBF using Levenberg Marquardt learning rule with linear sigmoid activation function

5.3.13 Results of RBF using conjugate gradient learning rule with tanh activation function

5.3.14 Results of RBF using conjugate gradient learning rule with linear tanh activation function

5.3.15 Results of RBF using conjugate gradient learning rule with sigmoid activation function

5.3.16 Results of RBF using conjugate gradient learning rule with linear sigmoid activation function

5.3.17 Results of RBF using quickprop learning rule with tanh activation function

5.3.18 Results of RBF using quickprop learning rule with linear tanh activation function

5.3.19 Results of RBF using quickprop learning rule with sigmoid activation function

5.3.20 Results of RBF using quickprop learning rule with linear sigmoid activation function

5.3.21 Production Report of the RBF with Levenberg Marquardt with tanh activation function

5.4 Conclusions

6. Rainfall forecasting using time lagged recurrent network

6.1 Introduction

6.2 Procedure for Experimentation

6.3 Experimental Results, Analysis and Discussions

6.3.1 Results of TLRN with TDNN using momentum learning rule with tanh activation function

6.3.2 Results of TLRN with TDNN using momentum learning rule with linear tanh activation function
6.3.3 Results of TLRN with TDNN using momentum learning rule with sigmoid activation function

6.3.4 Results of TLRN with TDNN using momentum learning rule with linear sigmoid activation function

6.3.5 Results of TLRN with TDNN using delta bar delta learning rule with tanh activation function

6.3.6 Results of TLRN with TDNN using delta bar delta learning rule with linear tanh activation function

6.3.7 Results of TLRN with TDNN using delta bar delta learning rule with sigmoid activation function

6.3.8 Results of TLRN with TDNN using delta bar delta learning rule with linear sigmoid activation function

6.3.9 Results of TLRN with TDNN using Levenberg Marquardt learning rule with tanh activation function

6.3.10 Results of TLRN with TDNN using Levenberg Marquardt learning rule with linear tanh activation function

6.3.11 Results of TLRN with TDNN using Levenberg Marquardt learning rule with sigmoid activation function

6.3.12 Results of TLRN with TDNN using Levenberg Marquardt learning rule with linear sigmoid activation function

6.3.13 Results of TLRN with TDNN using conjugate gradient learning rule with tanh activation function

6.3.14 Results of TLRN with TDNN using conjugate gradient learning rule with linear tanh activation function

6.3.15 Results of TLRN with TDNN using conjugate gradient learning rule with sigmoid activation function

6.3.16 Results of TLRN with TDNN using conjugate gradient learning rule with linear sigmoid activation function

6.3.17 Results of TLRN with TDNN using quickprop learning rule with tanh activation function
6.3.18 Results of TLRN with TDNN using quickprop learning rule with linear tanh activation function

6.3.19 Results of TLRN with TDNN using quickprop learning rule with sigmoid activation function

6.3.20 Results of TLRN with TDNN using quickprop learning rule with linear sigmoid activation function

6.3.21 Production Report of the RBF with Levenberg Marquardt with tanh activation function

6.4 Conclusions

7. Conclusion

7.1 Conclusions

7.2 Recommendations for further work

References

Publications