CONTENTS

LIST OF FIGURES xi

LIST OF TABLES xvi

1. INTRODUCTION 1
 1.1. Background and Motivation 1
 1.2. Thermal-enhanced machining 1
 1.3. Overview of difficult to machine materials 3
 1.4. Super alloys- An overview 4
 1.5. Nickel based super alloys 5
 1.6. Machining challenges for Inconel 718 alloy 6
 1.7. Scope of the present research work 8
 1.8. Thesis outline 9

2. LITERATURE REVIEW 11
 2.1. Introduction 11
 2.2. Conventional machining of Inconel 718 11
 2.2.1. Cutting force 11
 2.2.2. Surface integrity 15
 2.2.3. Tool Wear 18
 2.2.4. Chip formation 21
 2.2.5. Cutting tool materials 21
 2.2.6. Modeling and optimization 22
 2.3. Review of literature for laser assisted hybrid machining 24
 2.3.1. Introduction 24
 2.3.2. Effect of laser parameters on machinability 25
 2.4. Research gap 31
 2.5. Objectives of the present research 31
 2.6. Methodology 32
 2.7. Summary 34
3. EXPERIMENTAL DETAILS

3.1. Introduction 35

3.2. Laser assisted hybrid machining (LAHM) facility 35

3.3. Description of subsystems in LAHM 37
 3.3.1 Laser sources 37
 3.3.2 Laser head 37
 3.3.3 Fixture for holding laser delivery head 38

3.4. Description of measuring equipment in LAHM 39
 3.4.1 Temperature measurement using Infrared pyrometer 39
 3.4.2 Force measurement using dynamometer 39
 3.4.3 Surface roughness measurement 40
 3.4.4 Tool wear 41
 3.4.5 Microscopic analysis of subsurface damage 41
 3.4.6 Measurement of microhardness 42
 3.4.7 Chip morphology study 43

3.5. Experimental procedure 44
 3.5.1 Material chosen for the present study 44
 3.5.2 Selection of cutting tool 45
 3.5.3 Selection of process parameters 45

3.6. Experimental plan 46

3.7. Summary 46

4. PARAMETRIC STUDY OF LASER SCANNING PARAMETERS 47

4.1. Introduction 47

4.2. Description of laser preheating trials 47

4.3. Procedure for laser scanning experiments 48
 4.3.1 Laser spot calibration tests 48
 4.3.2 Plan of experiments-Laser scanning tests 49

4.4. Experimental results and discussion 50
4.5. Optimization using response surface methodology 52
 4.5.1 Empirical model development 52
 4.5.2 Parametric analysis for surface temperature 54
 4.5.3 Analysis of microstructure, heat affected depth and Microhardness 57
4.6. Summary 61

5. MACHINABILITY STUDY ON LAHM ON INCONEL 718 ALLOY 62
 5.1. Introduction 62
 5.2 Cutting conditions and measurement 62
 5.2.1 Experimental design details 63
 5.3. Results and discussion 65
 5.3.1 Effect of parameters on feed force (Fx) 65
 5.3.2 Effect of parameters on thrust force (Fy) 69
 5.3.3 Effect of parameters on cutting force (Fz) 73
 5.3.4 Effect of parameters on surface roughness 77
 5.3.5 Effect of parameters on flank wear (Vba) 82
 5.4. Analysis of variance 86
 5.4. Summary 87

6. STATISTICAL MODELING OF LASER ASSISTED HYRBID MACHINING 88
 6.1. Introduction 88
 6.2. Modeling using response surface methodology 88
 6.3. Regression model development 89
 6.4. Model adequacy test 92
 6.4.1 Model adequacy for feed force (Fx) 92
 6.4.2 Model adequacy for thrust force (Fy) 93
 6.4.3 Model adequacy for cutting force (Fz) 95
 6.4.4 Model adequacy for surface roughness (Ra) 96
 6.4.5 Model adequacy for flank wear (Vba) 97
6.5. Modeling using artificial neural network
 6.5.1 ANN Structure
 6.5.2 Model development
6.6. Statistical validation of ANN model
6.7. Comparison of RSM and ANN model
6.8. Summary

7. BENEFITS OF LASER ASSISTED HYBRID MACHINING
 7.1. Introduction
 7.2. Comparison of experimental results
 7.2.1 Benefits of laser assistance on cutting force
 7.2.2 Benefits of laser assistance on surface roughness
 7.4.3 Benefits of laser assistance on flank wear
 7.3. Chip morphology study
 7.4. Summary

8. PARAMETER OPTIMIZATION, TOOL LIFE AND SURFACE INTEGRITY STUDY
 8.1. Introduction
 8.2. Desirability function approach
 8.2.1 Single response optimization
 8.2.2 Multi-response optimization using overall desirability
 8.3. Confirmation experiments
 8.4. Tool life analysis
 8.4.1 Tool failure model analysis
 8.5. Surface integrity analysis
 8.6. Summary
9. CONCLUSIONS AND RECOMMENDATIONS

9.1. Key findings
 9.1.1 Phase I: Parametric study of laser scanning parameters
 9.1.2 Phase II: Machinability study on LAHM of Inconel 718
 9.1.3 Phase III: Statistical modeling of laser assisted hybrid machining
 9.1.4 Phase IV: Benefits of laser assisted hybrid machining
 9.1.5 Phase V: Parameter optimization, tool life and surface integrity study

9.2. Contributions of the research

9.3. Limitations

9.4. Recommendation

APPENDICES

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F

REFERENCES

LIST OF PUBLICATIONS