CONTENTS

Abstract ii
Acknowledgement iv
List of Abbreviation v
List of figures xii
List of tables xv

Chapter 1
Introduction
1.1 An overview to Urolithiasis 1
1.1.1 The chemistry of stone formation 2
1.1.2 Theories of stone formation 2
1.1.2.1 The matrix theory 3
1.1.2.2 Crystallization inhibitor theory 4
1.1.2.3 Hyper excretion crystallization theory 4
1.1.3 Different types of urinary stones according to its chemical compositions and factors of origin 4
1.1.3.1 Calcium oxalate stones 6
1.1.3.2 Calcium phosphate stones 7
1.1.3.3 Struvite stones 8
1.1.3.4 Uric acid stones 9
1.1.3.5 Xanthine and cystine stones 9
1.1.3.6 Drug lithiasis 9
1.2 Treatments of urolithiasis 10
1.2.1 Percutaneous nephrolithotomy (PCN) 10
1.2.1.2 Procedure 11
1.2.2 Extracorporeal shock wave lithotripsy (ESWL) 11
1.2.2.1 Principle and components of ESWL 12
1.2.2.2 Disadvantages of ESWL

1.2.3 Laser lithotripsy

1.2.3.1 Procedure of laser lithotripsy

1.2.3.2 Disadvantage of laser lithotripsy

1.2.4 Ayurvedic treatment and medications

1.2.4.1 Ayurveda for urolithiasis

1.3 Artificial urinary crystal growth

1.3.1 Principle of gel growth method

1.3.2 Single diffusion gel growth technique

1.3.3 Double diffusion gel growth technique

1.4 Globalized research on rural health care

1.4.1 Improvement of rural health care centers

1.4.2 Portable screening gadgets

1.5 Scope of thesis

Chapter 2
Invitro study on the efficiency of laser lithotripsy treatment for natural urinary stones

2.1 Introduction

2.2 Experimental procedure

2.2.1 Collection of surgically removed stones

2.2.2 Preservation of stones

2.2.3 X-ray diffraction (XRD) characterization

2.2.4 Fourier transform infra red (FTIR) characterization

2.2.5 Laser lithotripsy parameter study

2.3 Results and discussion

2.3.1 XRD characterization and analysis of samples.

2.3.2 FTIR characterization and compound analysis

2.3.3 Laser lithotripsy parameter analysis
2.3.3.1 Stone ablation rate (SAR) analysis 42
2.3.3.2 Fiber tip degradation rate (FDR) 44
2.4 Conclusion 44

Chapter 3

Dielectric studies on struvite urinary crystals, a gateway to the new treatment modality for urolithiasis

3.1 Introduction 45
3.2 Experimental procedure 46
 3.2.1 Growth of struvite crystals 46
 3.2.2 Characterization of crystals 46
 3.2.3 Pellet preparation and dielectric analysis 47
3.3 Results and discussions 48
 3.3.1 Optical image analysis and the crystal size calculation 48
 3.3.2 X-Ray diffraction (XRD) analysis and crystal size calculation 48
 3.3.3 Fourier-transform infra red (FT-IR) analysis 49
3.4 Dielectric result analysis 50
 3.4.1 Dielectric constant 50
 3.4.2 Dielectric loss 51
 3.4.3 AC resistivity and AC conductivity 51
 3.4.4 Impedance and admittance variation 52
 3.4.5 Dielectric therapy for urolithiasis 56
3.5 Conclusion 57

Chapter 4

In vitro studies on the effect of Scoparia Dulcis in the growth struvite urinary crystals and the study on its antimicrobial activity

4.1 Introduction 58
4.2 Materials and methods 59
 4.2.1 In vitro inhibition study 59
 4.2.1.1 Collection of plant material 59
4.2.1.2 Preparation of herbal extract 60
4.2.1.1 Preparation of additive solutions 60
4.2.2 Antimicrobial effect of Scoparia Dulcis 61
 4.2.2.1 Dissolving the struvite crystals 61
 4.2.2.2 Preparation of Mullar Hinton agar 61
 4.2.2.3 Antimicrobial activity 62
4.3 Results and Discussion 62
 4.3.1 Crystal growth rate and inhibitory effect analysis 62
 4.3.2 Drug activity 65
 4.3.3 Statistical analysis 66
 4.2.6 Antimicrobial activity 66
4.4 Conclusion 68

Chapter 5
Prophylactic and curative effect of Scoparia Dulcis on kidney stone induced male wistar rats
5.1 Introduction 69
5.2 Experimental procedure 70
 5.2.1 Animals and study design 70
 5.2.2 Biochemical analysis 70
 5.2.3 Histopathology study 70
 5.2.4 Statistical analysis 71
5.3 Results and discussion 71
 5.3.1 Analysis of urine parameters 71
 5.3.2 Analysis of serum parameters 72
 5.3.3 Histopathology studies 73
5.4 Conclusion 78
Chapter 6
A portable detection kit using gold nanoparticles modified carbon paste electrode for screening uricemia patients

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 Introduction</td>
<td>80</td>
</tr>
<tr>
<td>6.2 Materials and Methods</td>
<td>81</td>
</tr>
<tr>
<td>6.2.1 Preparation of working electrode</td>
<td>82</td>
</tr>
<tr>
<td>6.2.1.1 Preparation of Au nanoparticles</td>
<td>82</td>
</tr>
<tr>
<td>6.2.1.2 Preparation of AuCPE modified carbon paste composite Electrodes</td>
<td>82</td>
</tr>
<tr>
<td>6.2.2 Preparation of uric acid solutions</td>
<td>83</td>
</tr>
<tr>
<td>6.2.3 Preparation of artificial urine</td>
<td>83</td>
</tr>
<tr>
<td>6.2.4 Collection of real samples</td>
<td>83</td>
</tr>
<tr>
<td>6.2.5 Electronic kit fabrication</td>
<td>83</td>
</tr>
<tr>
<td>6.3 Results and discussion</td>
<td>84</td>
</tr>
<tr>
<td>6.3.1 Calibration of Au-CPE electrode</td>
<td>84</td>
</tr>
<tr>
<td>6.3.2 Au-CPE (4mg) response to uric acid</td>
<td>84</td>
</tr>
<tr>
<td>6.3.3 Au-CPE response to artificial urine</td>
<td>88</td>
</tr>
<tr>
<td>6.3.4 Detection kit for uricemia</td>
<td>90</td>
</tr>
<tr>
<td>6.3.4.1 Fabrication of components for the kit</td>
<td>90</td>
</tr>
<tr>
<td>6.3.4.2 Microcontroller coding</td>
<td>92</td>
</tr>
<tr>
<td>6.3.4.3 Detection kit display for known concentration of samples</td>
<td>95</td>
</tr>
<tr>
<td>6.3.4.4 Kit response for real samples</td>
<td>97</td>
</tr>
<tr>
<td>6.4 Conclusion</td>
<td>98</td>
</tr>
</tbody>
</table>

References 100
List of publications 110