List of Figures

Fig. 1.1 Density of states D (E) in semiconductor (i) zero dimensional (0-D) nanoparticles (ii) one dimensional (1-D) nano wire (iii) two-dimensional (2-D) nanoplates (iv) three dimensional (3-D) bulk nanomaterial

Fig. 1.2 Zero dimensional (0-D) nanostructure material

Fig. 1.3 One dimensional (1-D) nanostructure material

Fig. 1.4 Two dimensional nanostructure materials

Fig. 1.5 Three dimensional (3-D) nanostructure materials

Fig. 1.6 Schematic of Bottom-up and Top-down synthesis approach.

Fig. 2.1 Stick-and-ball representation of ZnO crystal structures: (i) hexagonal wurtzite (ii) cubic Zincblende (iii) cubic rock salt (Shaded gray and black spheres denote Zn and O atoms, respectively.

Fig. 2.2 Zinc oxide wurtzite structure and its polar surfaces. Zine atoms are represented by the smaller white balls and oxygen atoms by red colour.

Fig. 2.3 (a) A schematic representation of a hexagonal wurtzite ZnO structure with lattice constants a in the basal plane and c in the basal direction

Fig. 2.3 (b) The tetrahedral coordination of Zn–O

Fig 2.4 (a) The LDA band structure of bulk wurtzite ZnO calculated using dominant atomic self-interaction-corrected pseudo potentials (SIC-PP).

Fig. 2.4 (b) The valence band (VB) and conduction band (CB) of ZnO

Fig. 3.1 A schematic thermo-balance

Fig. 3.2 Experimental set-up of TGA/DTA analyzer.

Fig. 3.3. X-ray Diffractometer (Analytical, Model - X’Pert PRO MPD)

Fig. 3.4 Interference of X-ray beam in crystal lattice

Fig. 3.5 Mechanism in UV-Vis Spectrometer

Fig. 3.6 Shimadzu – RF 5301 PC spectrofluorometer

Fig. 3.7 Schematic diagram of FT-IR spectrometer

Fig. 3.8 Schematic diagram of scanning electron microscopy

Fig. 3.9 Interaction of incident beam on matter

Fig. 3.10 Elements in an EDAX spectrum are identified based on the energy content of the X-rays emitted by their electrons

Fig. 3.11 A schematic diagram of energy dispersive X-ray analysis spectrometer

Fig. 3.12 The transmission electron microscopy.

Fig. 3.13 Schematic diagram of two probe method.
Fig. 3.14 DC resistivity experimental set-up

Fig. 4.1(a) Typical synthesis images of Zn$_{1-x}$Co$_x$O (x = 0.00, 0.06, 0.12) nanoparticles

Fig. 4.1(b) Flowchart of sol gel auto combustion synthesis method of Zn$_{1-x}$Co$_x$O (0.00≤x≤0.36) nanoparticles

Fig. 4.1(c) Chemical reaction of Zn$_{1-x}$Co$_x$O (0.00≤x≤0.36) nanoparticles

Fig. 4.2 Thermo gravimetric and differential thermal analysis of ZnO nanoparticles

Fig. 4.3 (a): X-ray diffraction patterns of Zn$_{1-x}$Co$_x$O (x = 0.00, 0.06) nanoparticles

Fig. 4.3 (b): X-ray diffraction patterns of Zn$_{1-x}$Co$_x$O (x = 0.12, 0.18) nanoparticles

Fig. 4.3 (c): X-ray diffraction patterns of Zn$_{1-x}$Co$_x$O (x = 0.24, 0.30) nanoparticles

Fig. 4.3 (d): X-ray diffraction patterns of Zn$_{1-x}$Co$_x$O (x = 0.36) nanoparticles

Fig. 4.4 Expanded view of (100), (002) and (101) plane of Zn$_{1-x}$Co$_x$O (0.00≤x≤0.36) nanoparticles

Fig. 4.5 Variation of peak intensity along (101) plane with Co content ‘x’

Fig. 4.6 Variation of full width at half maxima (FWHM) and average crystallite size with Co content ‘x’

Fig. 4.7 Variation of lattice parameter a and c with Co content ‘x’

Fig. 4.8 Variation of X-ray density and volume of the unit cell with Co content ‘x’

Fig. 4.9 Variation of c/a ratio and positional parameter ‘u’ with Co content ‘x’

Fig. 4.10 (a-f) Scanning electron microscope images of Zn$_{1-x}$Co$_x$O (0.00≤x≤0.30) nanoparticles

Fig. 4.11 (a-f) Energy dispersive X-ray analysis patterns of Zn$_{1-x}$Co$_x$O (0.00≤x≤0.30) nanoparticles

Fig. 4.12 TEM images (a-d) and corresponding selected area electron diffraction patterns (SAED) (e-h) of Zn$_{1-x}$Co$_x$O (0.00≤x≤0.18) nanoparticles

Fig. 4.13 FT-IR spectra of Zn$_{1-x}$Co$_x$O (0.00≤x≤0.36) nanoparticles

Fig. 4.14 UV-Vis absorption spectra of Zn$_{1-x}$Co$_x$O (0.00≤x≤0.36) nanoparticles

Fig. 4.15 (αhv)2 versus photon energy (hv) of Zn$_{1-x}$Co$_x$O (0.00≤x≤0.36) nanoparticles

Fig. 4.16 Variation of energy band gap with Co content ‘x’

Fig. 4.17 Photoluminescence spectra recorded at room temperature of Zn$_{1-x}$Co$_x$O (0.00≤x≤0.36) nanoparticles

Fig. 4.18 Variation of DC electrical resistivity with temperature and Co content ‘x’

Fig. 4.19 (a) Variation of dielectric constant (ε') with log (f) of Zn$_{1-x}$Co$_x$O (0.00≤x≤0.36) nanoparticles

Fig. 4.19 (b) Variation of dielectric loss (ε'') with log (f) of Zn$_{1-x}$Co$_x$O (0.00≤x≤0.36) nanoparticles

Fig. 4.19 (c) Variation of dielectric loss tangent (tanδ) with log (f) of Zn$_{1-x}$Co$_x$O (0.00≤x≤0.36) nanoparticles

Fig. 4.20 (a) M-H plots of Zn$_{1-x}$Co$_x$O (x = 0.00, 0.06) nanoparticles
Fig. 4.20 (b) M-H plots of Zn_{1-x}Co_xO (x = 0.12, 0.18) nanoparticles
Fig. 4.20 (c) M-H plots of Zn_{1-x}Co_xO (x = 0.24, 0.30) nanoparticles
Fig. 4.20 (d) M-H plots of Zn_{1-x}Co_xO (x = 0.36) nanoparticles
Fig. 4.21 (a) Zero field cooling (ZFC) and field cooling (FC) M–T curves of Zn_{1-x}Co_xO (x = 0.00) nanoparticles under a magnetic field of 112 Oe.
Fig. 4.21 (b) Zero field cooling (ZFC) and field cooling (FC) M–T curves of Zn_{1-x}Co_xO (x = 0.06) nanoparticles under a magnetic field of 112 Oe.
Fig. 4.21 (c) Zero field cooling (ZFC) and field cooling (FC) M–T curves of Zn_{1-x}Co_xO (x = 0.12) nanoparticles under a magnetic field of 112 Oe.
Fig. 4.21 (d) Zero field cooling (ZFC) and field cooling (FC) M–T curves of Zn_{1-x}Co_xO (x = 0.18) nanoparticles under a magnetic field of 112 Oe.
Fig. 4.21 (e) Zero field cooling (ZFC) and field cooling (FC) M–T curves of Zn_{1-x}Co_xO (x = 0.24) nanoparticles under a magnetic field of 112 Oe.
Fig. 4.21 (f) Zero field cooling (ZFC) and field cooling (FC) M–T curves of Zn_{1-x}Co_xO (x = 0.30) nanoparticles under a magnetic field of 112 Oe.
Fig. 4.21 (g) Zero field cooling (ZFC) and field cooling (FC) M–T curves of Zn_{1-x}Co_xO (x = 0.36) nanoparticles under a magnetic field of 112 Oe.
Fig. 5.1 (a) Typical synthesis images of Zn_{1-x}Mn_xO (x = 0.00 and 0.06) nanoparticles by sol–gel auto combustion method.
Fig. 5.1 (b) Flowchart of sol–gel auto combustion synthesis method of Zn_{1-x}Mn_xO (0.00≤x≤0.36) nanoparticles.
Fig. 5.1 (c) Chemical reaction of Zn_{1-x}Mn_xO (0.00≤x≤0.36) nanoparticles by sol–gel auto combustion synthesis method
Fig. 5.2 (a) X-ray diffraction patterns of Zn_{1-x}Mn_xO (x = 0.00, 0.06) nanoparticles
Fig. 5.2 (b) X-ray diffraction patterns of Zn_{1-x}Mn_xO (x = 0.12, 0.18) nanoparticles
Fig. 5.2 (c) X–ray diffraction patterns of Zn_{1-x}Mn_xO (x = 0.24, 0.30) nanoparticles
Fig. 5.2 (d) X–ray diffraction pattern of Zn_{1-x}Mn_xO (x = 0.36) nanoparticles
Fig. 5.3 Expanded view of (100), (002) and (101) plane of Zn_{1-x}Mn_xO (0.00≤x≤0.36) nanoparticles
Fig. 5.4 Variation of peak intensity along (101) plane with Mn content ‘x’.
Fig. 5.5 Variation of full width half maxima (FWHM) and average crystallite size with Mn content ‘x’.
Fig. 5.6 Variation of lattice parameter a and c with Mn content ‘x’
Fig. 5.7 Variation of X–ray density and volume of the unit cell with Mn content ‘x’
Fig. 5.8 Variation of c/a ratio and positional parameter ‘u’ with Mn content ‘x’
Fig. 5.9 (a–f) Scanning electron microscope images of Zn_{1-x}Mn_xO (0.00≤x≤0.30) nanoparticles
Fig. 5.10 (a–f) Energy dispersive X–ray analysis patterns of Zn_{1-x}Mn_xO (0.00≤x≤0.30) nanoparticles
Fig. 5.11 Typical TEM images (a-d) and their corresponding selected area electron diffraction (SAED) patterns (e-h) of Zn_{1-x}Mn_{x}O (0.00 ≤ x ≤ 0.18) nanoparticles
Fig. 5.12 FTIR spectra of Zn_{1-x}Mn_{x}O (0.00 ≤ x ≤ 0.36) nanoparticles
Fig. 5.13 UV–Vis absorption spectra of Zn_{1-x}Mn_{x}O (0.00 ≤ x ≤ 0.36) nanoparticles
Fig. 5.14 (αhv)^2 versus photon energy (hv) of Zn_{1-x}Mn_{x}O (0.00 ≤ x ≤ 0.36) nanoparticles
Fig. 5.15 Variation of energy band gap with Mn content ‘x’
Fig. 5.16 Room temperature photoluminescence spectra of Zn_{1-x}Mn_{x}O (0.00 ≤ x ≤ 0.36) nanoparticles
Fig. 5.17 Variation of DC electrical resistivity as a function of temperature with Mn content ‘x’
Fig. 5.18 Variation of dielectric constant (ε’) with log (f) of Zn_{1-x}Mn_{x}O (0.00 ≤ x ≤ 0.36) nanoparticles
Fig. 5.19 Variation of dielectric loss (ε”) with log (f) of Zn_{1-x}Mn_{x}O (0.00 ≤ x ≤ 0.36) nanoparticles
Fig. 5.20 Variation of dielectric loss tangent (tanδ) with log (f) of Zn_{1-x}Mn_{x}O (0.00 ≤ x ≤ 0.36) nanoparticles
Fig. 5.21 (a) M–H plots of Zn_{1-x}Mn_{x}O (x = 0.00, 0.06) nanoparticles
Fig. 5.21 (b) M–H plots of Zn_{1-x}Mn_{x}O (x = 0.12, 0.18) nanoparticles
Fig. 5.21 (c) M–H plots of Zn_{1-x}Mn_{x}O (x = 0.24, 0.30) nanoparticles
Fig. 5.21 (d) M–H plots of Zn_{1-x}Mn_{x}O (x = 0.36) nanoparticles
Fig. 5.22 (a) Zero field cooling (ZFC) and field cooling (FC) M—T curves of Zn_{1-x}Mn_{x}O (x = 0.00) nanoparticles under a magnetic field of 112 Oe
Fig. 5.22 (b) Zero field cooling (ZFC) and field cooling (FC) M—T curves of Zn_{1-x}Mn_{x}O (x = 0.06) nanoparticles under a magnetic field of 112 Oe
Fig. 5.22 (c) Zero field cooling (ZFC) and field cooling (FC) M—T curves of Zn_{1-x}Mn_{x}O (x = 0.12) nanoparticles under a magnetic field of 112 Oe
Fig. 5.22 (d) Zero field cooling (ZFC) and field cooling (FC) M—T curves of Zn_{1-x}Mn_{x}O (x = 0.18) nanoparticles under a magnetic field of 112 Oe
Fig. 5.22 (e) Zero field cooling (ZFC) and field cooling (FC) M—T curves of Zn_{1-x}Mn_{x}O (x = 0.24) nanoparticles under a magnetic field of 112 Oe
Fig. 5.22 (f) Zero field cooling (ZFC) and field cooling (FC) M—T curves of Zn_{1-x}Mn_{x}O (x = 0.30) nanoparticles under a magnetic field of 112 Oe
Fig. 5.22 (g) Zero field cooling (ZFC) and field cooling (FC) M—T curves of Zn_{1-x}Mn_{x}O (x = 0.36) nanoparticles under a magnetic field of 112 Oe