TABLE OF CONTENTS

CHAPTER NO. TITLE PAGE NO.

ABSTRACT iv
LIST OF TABLES xi
LIST OF FIGURES xv
LIST OF ABBREVIATIONS xvii

1 INTRODUCTION TO ROUTING IN WIRELESS SENSOR NETWORK 1
 1.1 INTRODUCTION 1
 1.2 NEED FOR ENERGY-EFFICIENT ROUTING IN WIRELESS SENSOR NETWORK 3
 1.3 CHALLENGES ON ROUTING IN WIRELESS SENSOR NETWORK 4
 1.4 OBJECTIVES OF THE THESIS 8
 1.5 ORGANIZATION OF THE THESIS 12

2 LITERATURE SURVEY 15
 2.1 WIRELESS SENSOR NETWORKS 15
 2.2 ROUTING IN WIRELESS SENSOR NETWORKS 16
 2.2.1 Flat Routing 16
 2.2.2 Hierarchical-Based Routing 17
 2.2.3 Location-Based Routing 17
 2.3 ROUTING IN WIRELESS SENSOR NETWORK 17
 2.4 CLUSTERING IN WIRELESS SENSOR NETWORK 23
 2.4.1 Advantages of clustering 24
 2.4.2 Clustering attributes in Wireless Sensor Network 30
 2.5 CLUSTER-BASED ROUTING IN WIRELESS SENSOR NETWORK 34
2.6 MULTIPATH ROUTING SCHEMES IN WIRELESS SENSOR NETWORK

2.6.1 Motivations for using Multipath Routing Approach in Wireless Sensor Network 46
2.6.2 Basic Principles in Designing Multipath Routing Protocols 48
2.6.3 Existing Multipath Routing Protocols in Wireless Sensor Network 52
2.6.4 Application-related issues 69

3 OPTIMAL GRADIENT ROUTING WITH ON DEMAND NEIGHBOURHOOD INFORMATION SCHEME 72

3.1 INTRODUCTION 72
3.2 NEED FOR ENERGY-EFFICIENT ROUTING IN WIRELESS SENSOR NETWORK 72
3.3 NEED FOR MULTI PATH ROUTING IN WIRELESS SENSOR NETWORK 76
3.4 THE PROPOSED OPTIMAL GRADIENT ROUTING WITH ON DEMAND NEIGHBOURHOOD INFORMATION SCHEME 78

3.4.1 Gradient-Based Network Setup 79
3.4.1.1 Gradient Setup 79
3.4.1.2 Height calculation 79
3.4.1.3 Data forwarding approach 79
3.4.2 On demand multi-hop information-based multipath routing 81
3.4.3 Look ahead algorithm 82
3.4.4 Energy dissipation radio model 85

3.5 SIMULATION AND RESULTS 85

3.5.1 Simulation Study 85
3.5.2 Algorithms used for comparison 86
3.5.3 Results and discussion
 3.5.3.1 Energy consumption of the network
 3.5.3.2 Deadline delivery success ratio
 3.5.3.3 Routing overhead
 3.5.3.4 Packet delivery ratio
 3.5.3.5 Network lifetime

3.6 SUMMARY OF THE CONTRIBUTIONS

4 ENERGY-EFFICIENT ROUTING PROTOCOL FOR WIRELESS SENSOR NETWORK USING FUZZY LOGIC

4.1 INTRODUCTION

4.2 NEED FOR CLUSTER-BASED FUZZY LOGIC ROUTING IN WIRELESS SENSOR NETWORK

4.3 PROPOSED ENERGY-EFFICIENT ROUTING PROTOCOL FOR WIRELESS SENSOR NETWORKS USING FUZZY LOGIC
 4.3.1 Cluster formation
 4.3.1.1 Fitness parameters
 4.3.1.2 Fitness function
 4.3.2 Cluster head selection
 4.3.2.1 Algorithm for optimum fuzzy set
 4.3.2.2 Algorithm for Cluster Head Selection

4.4 SIMULATION AND DISCUSSION
 4.4.1 Simulation Study
 4.4.2 Algorithm used for comparison
 4.4.3 Results and discussion
 4.4.3.1 Remaining energy level of the network
 4.4.3.2 Packet delivery ratio
 4.4.3.3 Network lifetime
 4.4.3.4 Energy consumption of the network
 4.4.3.5 Routing overhead
4.5 SUMMARY OF THE CONTRIBUTIONS 120

5 ENERGY-EFFICIENT CLUSTERING SCHEME FOR WIRELESS SENSOR NETWORK USING GENETIC APPROACH 122

5.1 INTRODUCTION 122

5.2 NEED FOR GENETIC APPROACH IN WIRELESS SENSOR NETWORK 124

5.3 THE PROPOSED CLUSTER-BASED ROUTING SCHEME USING GENETIC APPROACH IN WSNS 125

5.3.1 Sensor network model 126

5.3.2 Energy model 126

5.3.3 Genetic representation 128

5.3.4 Population initialization 129

5.3.5 Fitness function 129

5.3.6 Selection 130

5.3.7 Elitism-based immigrant scheme 131

5.3.8 Memory-enhanced GA 131

5.4 SIMULATION AND RESULTS 132

5.4.1 Simulation study 132

5.4.2 Algorithm used for comparison 134

5.4.3 Results and discussion 134

5.4.3.1 Data loss 136

5.4.3.2 Average energy consumption 137

5.4.3.3 Average residual energy 139

5.4.3.4 Variance of network energy 140

5.4.3.5 Network lifetime 141

5.4.3.6 Routing overhead 142

5.4.3.7 Packet delivery ratio 143

5.5 SUMMARY OF THE CONTRIBUTIONS 145
6 ENERGY-EFFICIENT LOAD-BALANCING MULTIPATH ROUTING SCHEME FOR WIRELESS SENSOR NETWORK

6.1 INTRODUCTION

6.1.1 Need for energy-efficient multipath routing in WSN

6.2 LOAD BALANCING MULTIPATH ROUTING SCHEME

6.2.1 Optimal double route scheme (ODRS)

6.2.1.1 Path discovery

6.2.1.2 Routing phase

6.2.1.3 Path maintenance phase

6.2.2 Path vacant ratio

6.2.3 Path importance index

6.2.4 Multipath evaluation based on link

6.3 SIMULATION AND RESULTS

6.3.1 Simulation Study

6.3.2 Algorithm used for comparison

6.3.3 Results and discussion

6.3.3.1 Packet delivery ratio

6.3.3.2 Total energy consumption of the network

6.3.3.3 Throughput

6.3.3.4 End-to-end delay

6.3.3.5 Network lifetime

6.3.3.6 Routing overhead

6.4 SUMMARY OF THE CONTRIBUTIONS

7 CONCLUSION AND FUTURE WORK

7.1 THESIS CONTRIBUTIONS

7.2 CONCLUSION REMARKS

7.3 SCOPE FOR FUTURE WORK