Chapter-3

SOME MORE RESULTS ON THE LATTICE $K_1(S)$

Introduction

In this chapter, we discuss some special types of congruences on a topological semigroup S and related results about the lattice $K_1(S)$ of semigroup compactifications of a topological semigroup S, also some results about atoms and dual atoms of $K_1(S)$ are obtained. These arose as a result of our attempt (though not successful) to obtain at least some partial converse of the theorem— for topological semigroups S_1 and S_2 if (β_1,B_1) and (β_2,B_2) are topologically isomorphic then the lattices $K_1(S_1)$ and $K_1(S_2)$ are isomorphic.

In Section 3.1, we prove that

(i) A topological semigroup S with Bohr compactification (β,B) has a semigroup compactification (α,A) determined by 'n' disjoint closed proper weak ideals (ideals) of B, at least one of which is non-singleton only if S has a semigroup compactification strictly bigger than (α,A).
(ii) A topological semigroup S with Bohr compactification (β, B) has an n-point compactification determined by \('n'\) non-empty subsets of B does not imply that it has an $(n-1)$-point compactification, nor does it imply that there is a semigroup compactification strictly bigger than (α, A) different from (β, B).

(iii) If a topological semigroup S with (β, B) has an n-point compactification (α, A) determined by \('n'\) non-empty weak ideals (ideals) of B, then there exists semigroup compactification strictly bigger than (α, A), but it does not imply that S has an $(n-1)$-point compactification.

In Section 3.2 we describe the dual atoms and atoms of $K_1(S)$, when B is finite.

3.1 Special types of congruences

In this section we introduce weak ideals, joint weak ideals and complementary joint ideals of a semigroup S and describe special types of congruences on S.

Let S be a semigroup and ω an ideal of S, then $(\omega \times \omega) \cup \Delta$ is a congruence on S [HOW]. But converse need not be true. i.e., if R is a congruence of the form $(\omega \times \omega) \cup \Delta$, then ω need not be an ideal of S.
Example 3.1.1.

1) $\mathbb{Z}_4 = \{0, 1, 2, 3\}$ with multiplication modulo 4 is a semigroup.

Here $\{1, 3\} \times \{1, 3\} \cup \triangle$ is a congruence on \mathbb{Z}_4, but $\{1, 3\}$ is not an ideal of \mathbb{Z}_4.

2) Let $T = \{o, e, f, g, x, y\}$ with usual matrix multiplication where

$$
o = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad e = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$
f = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad g = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$
x = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \quad y = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Here $\{f, g\} \times \{f, g\} \cup \triangle$ is a congruence, but $\{f, g\}$ is not an ideal.
In this situation we introduce the following definitions.

Definition 3.1.2.

A non-empty subset ω of a semigroup S is said to be a

(i) weak right ideal of S

if either $ax, bx \in \omega$ or $ax = bx$ for all $a, b \in \omega$
and for all $x \in S$.

(ii) weak left ideal of S

if either $xa, xb \in \omega$ or $xa = xb$ for all $a, b \in \omega$
and for all $x \in S$.

(iii) weak ideal of S, if it is both weak right and weak left ideal of S

i.e., if either $ax, bx \in \omega$ or $ax = bx$ and either $xa, xb \in \omega$ or $xa = xb$
for all $a, b \in \omega$ and for all $x \in S$

Result 3.1.3

A topological semigroup S has a non-trivial closed congruence of the form $\omega \times \omega \cup \Delta$ if and only if ω is a closed non-singleton proper weak ideal of S.
Proof

Assume that S has a non-trivial closed congruence of the form $\omega \times \omega \cup \Delta = R$ (say)

i.e., $\triangle \subseteq R \subseteq S \times S$

and for all $(a,b) \in R$ both $a,b \in \omega$ or $a = b$.

Since R is non-trivial, there exist at least one (a,b) such that $a \neq b \in \omega$.

i.e., ω is a non-singleton proper subset of S.

ω is a weak ideal. For,

since R is a congruence,

both $(ax,bx), (xa,xb) \in R$ for all $a,b \in \omega$ and

for all $x \in S$.

i.e., either $ax, bx \in \omega$ or $ax=bx$

and either $xa, xb \in \omega$ or $xa = xb$

for all $a,b \in \omega$ and for all $x \in S$.

i.e., ω is a weak ideal.

Again ω is closed; for,

let (x_α) be a net in ω, $(x_\alpha) \longrightarrow x \in S$.

Since ω is non-singleton, let $y (\neq x) \in \omega$.
\((x_\alpha, y) \) is a net in \(R \), which is closed.

\[i.e., (x, y) \in \omega \times \omega \quad (\therefore x \neq y) \]

\[\therefore x \in \omega. \]

On the other hand, consider \(\omega \) as a closed non-singleton proper weak ideal of \(S \), then clearly \(R = \omega \times \omega \cup \Delta \) is closed, since \(\Delta \) is closed in \(S \times S \) and \(\omega \) is closed in \(S \).

Clearly \(R \) is an equivalence.

Again \(R \) is compatible. For,

since \(\omega \) is a weak ideal both \((ax, bx), (xa, xb) \in R \)

for all \(a, b \in \omega \) and for all \(x \in S \).

Clearly \(R \) is non-trivial, since \(\omega \) is a non-singleton proper subset of \(S \).

Hence the result.

Remark 3.1.4.

If \(B \) is the Bohr compactification of a topological semigroup \(S \), then \(B/(\omega \times \omega) \cup \Delta \) is called the semigroup compactification of \(S \) determined by \(\omega \). Thus \(S \) has a semigroup compactification defined by \(\omega \) if and only if \(\omega \) is a closed non-singleton proper weak ideal of \(B \).
Definition 3.1.5.

Two non-empty disjoint subsets \(\omega_1 \) and \(\omega_2 \) of a semigroup \(S \) are said to be

(i) joint weak right ideals if
 either \(ax, bx \in \omega_1 \) or \(ax, bx \in \omega_2 \) or \(ax = bx \)
 for all \(a, b \in \omega_1 \) or \(a, b \in \omega_2 \) and for all \(x \in S \).

(ii) joint weak left ideals if
 either \(xa, xb \in \omega_1 \) or \(xa, xb \in \omega_2 \) or \(xa = xb \)
 for all \(a, b \in \omega_1 \) or \(a, b \in \omega_2 \) and for all \(x \in S \).

(iii) joint weak ideals if they are both joint weak right and joint weak left ideals of \(S \).

i.e., either \(ax, bx \in \omega_1 \) or \(ax, bx \in \omega_2 \) or \(ax = bx \)
and either \(xa, xb \in \omega_1 \) or \(xa, xb \in \omega_2 \) or \(xa = xb \)
for all \(a, b \in \omega_1 \) or \(a, b \in \omega_2 \), and for all \(x \in S \).

Result 3.1.6

A topological semigroup \(S \) has a non-trivial closed congruence of the form \(\omega_1 \times \omega_1 \cup \omega_2 \times \omega_2 \cup \bigtriangleup \) (\(\cup \) indicates the sets whose union is taken, are disjoint) if and only if \(\omega_1 \) and \(\omega_2 \) are disjoint closed proper joint weak ideals, at least one of which is non-singleton.
Proof

Suppose that S has a non-trivial closed congruence of the form

$$\omega_1 \times \omega_1 \cup \omega_2 \times \omega_2 \cup \triangle = R \text{ (say)}$$

$$\triangle \subseteq R \subseteq S \times S,$$ since R is non-trivial

and for all $(a, b) \in R$, both $a, b \in \omega_1$ or both $a, b \in \omega_2$ or $a = b$.

Clearly ω_1, ω_2 are disjoint proper subsets of S and at least one of them is non-singleton.

ω_1, ω_2 are joint weak ideals. For,

suppose first that $a, b \in \omega_1$.

Then both $(ax, bx), (xa, xb) \in R$ for all $x \in S$

(\because R is compatible)

i.e., either $ax, bx \in \omega_1$ or $ax, bx \in \omega_2$ or $ax = bx$

and either $xa, xb \in \omega_1$ or $xa, xb \in \omega_2$ or $xa = xb$ for all $x \in S$.

i.e., ω_1, ω_2 are joint weak ideals.

Similarly if for all $a, b \in \omega_2$ and for $a = b$.

Also they are closed. If ω_1 is a singleton, then clearly it is closed. If not, we proceed as follows.
Let \((x_\alpha)\) be a net in \(\omega_1\), \((x_\alpha) \longrightarrow x \in S\).

Since \(\omega_1\) is non-singleton, let \(y(\neq x) \in \omega_1, (x_\alpha, y)\) be a net in \(\omega_1 \times \omega_1\).

\(\therefore \ (x_\alpha, y)\) be a net in \(\omega_1 \times \omega_1 \cup \omega_2 \times \omega_2 \cup \Delta = R\),

which is closed.

\(\therefore \) the limit \((x, y)\) of \((x_\alpha, y)\) belongs to \(R\)

\(\therefore \ (x, y) \in \omega_1 \times \omega_1\).

i.e., both \(x, y \in \omega_1\). \(\therefore x \in \omega_1\). Thus \(\omega_1\) is closed. Similarly \(\omega_2\) is closed.

Hence the result.

On the other hand, if \(\omega_1, \omega_2\) are disjoint closed proper joint weak ideals of \(S\), at least one of which is non-singleton, then \(\omega_1 \times \omega_1 \cup \omega_2 \times \omega_2 \cup \Delta = R\) is closed, since \(\omega_1, \omega_2\) are closed in \(S\) and \(\Delta\) is closed in \(S \times S\).

\(R\) is clearly reflexive and symmetric.

\(R\) is transitive. For,

\((a, b) \in R \text{ and } (b, c) \in R\)

imply either both \(a, b \in \omega_1\) or both \(a, b \in \omega_2\) or \(a=b\) and either both \(b, c \in \omega_1\) or both \(b, c \in \omega_2\) or \(b=c\).
Since \(\omega_1, \omega_2 \) are disjoint, the following cases are not possible.

1. \(a, b \in \omega_1 \) and \(b, c \in \omega_2 \)
2. \(a, b \in \omega_2 \) and \(b, c \in \omega_1 \)

All other cases imply \((a,c) \in R\)

R is compatible. For,

Since \(\omega_1, \omega_2 \) are joint weak ideals

either both \(ax, bx \in \omega_1 \) or both \(ax, bx \in \omega_2 \) or \(ax = bx \)

and either both \(xa, xb \in \omega_1 \) or both \(xa, xb \in \omega_2 \) or \(xa = xb \)

for all \((a, b) \in R \) and for all \(x \in S \)

I.e., both \((ax, bx)\) and \((xa, xb) \in R\)

Also R is non-trivial since at least one of \(\omega_1, \omega_2 \) is non-singleton.

Hence the result.

Remark 3.1

A topological semigroup \(S \) with Bohr compactification \((\beta, B)\) has a semigroup compactification "determined" by \(\{\omega_1, \omega_2\} \) if and only if \(\omega_1, \omega_2 \) are disjoint closed proper joint weak ideals of \(B \), at least one of which is non-singleton.
Definition 3.1.8.

A finite disjoint family \(\{ \omega_1, \omega_2, \ldots, \omega_n \} \) of \(S \) is said to be joint weak ideals if either both \(ax, bx \in \omega_1 \) or both \(ax, bx \in \omega_2 \) or \(\ldots \) or both \(ax, bx \in \omega_n \) or \(ax = bx \) and either both \(xa, xb \in \omega_1 \) or both \(xa, xb \in \omega_2 \) or \(\ldots \) both \(xa, xb \in \omega_n \) or \(xa = xb \), for all \(a, b \in \omega_1 \) or in \(\omega_2 \) or in \(\omega_3 \) or \(\ldots \) in \(\omega_n \) for all \(x \in S \).

By a similar argument as to that in result (3.1.6) we obtain the following.

Result 3.1.9.

A topological semigroup \(S \) has a non-trivial closed congruence of the form \(\bigcup \limits_{i=1}^{n} \omega_i x \omega_i \cup \Delta \leftrightarrow \omega_i \)'s are disjoint closed proper joint weak ideals of \(S \), at least one of which is non-singleton.

Definition 3.1.10.

Two non-empty subsets \(\omega_1 \) and \(\omega_2 \) of a semigroup \(S \) are said to be

(i) joint right ideals, if either \(ax, bx \in \omega_1 \) or \(ax, bx \in \omega_2 \) for all \(a, b \in \omega_1 \) or \(a, b \in \omega_2 \) and for all \(x \in S \).
(ii) joint left ideals, if either $xa, xb \in \omega_1$ or $xa, xb \in \omega_2$ for all $a, b \in \omega_1$ or $a, b \in \omega_2$ and for all $x \in S$.

(iii) joint ideals, if both joint right and joint left ideals.

i.e., either $ax, bx \in \omega_1$ or $ax, bx \in \omega_2$
and either $xa, xb \in \omega_1$ or $xa, xb \in \omega_2$ for all $a, b \in \omega_1$
or $a, b \in \omega_2$ and for all $x \in S$.

Definition 3.1.11 Complementary joint ideals.

Two joint ideals ω_1 and ω_2 of a semigroup S are said to be complementary if they are disjoint and $\omega_1 \cup \omega_2 = S$.

Result 3.1.12.

A topological semigroup S has a non-trivial closed congruence of the form $\omega_1 \times \omega_1 \cup \omega_2 \times \omega_2$ if and only if ω_1 and ω_2 are disjoint closed proper complementary joint ideals of S, at least one of which is non-singleton.

Suppose S has a non trivial closed congruence of the form $\omega_1 \times \omega_1 \cup \omega_2 \times \omega_2 = R$ (say).

Then,

1) ω_1, ω_2 are proper subsets of S, at least one of which is non-singleton.
2) \(w_1, w_2 \) are complementary joint ideals for,

for all \(a \in S \) \((a,a) \in w_1 \times w_1 \cup w_2 \times w_2 = R \)

(\(\therefore \) R is a congruence)

i.e., either \(a \in w_1 \) or \(w_2 \), for all \(a \in S \)

i.e., \(S = w_1 \cup w_2 \).

Clearly \(w_1, w_2 \) are disjoint (\(R \) being an equivalence)

Again \(w_1, w_2 \) are joint ideals for,

for all \(a, b \in w_1 \) or \(a, b \in w_2 \) and for all \(x \in S \)

both \((ax, bx), (xa, xb) \in w_1 \times w_1 \cup w_2 \times w_2 \)

(\(\therefore \) R is compatible)

i.e., either both \(ax, bx \in w_1 \) or \(ax, bx \in w_2 \)

and either both \(xa, xb \in w_1 \) or \(xa, xb \in w_2 \)

\(\implies \) \(w_1, w_2 \) are joint ideals.

\(w_1, w_2 \) are closed. For, consider \(w_1 \).

If \(w_1 \) is a singleton, then clear. If \(w_1 \) is not a singleton, we proceed as follows.

Let \((x_\alpha) \) be a net in \(w_1 \), \((x_\alpha) \implies x \in S \).

Since \(w_1 \) is non-singleton, there exists \(y \in w_1, y \notin w_2 \).
\[(x_\alpha, y) \text{ be a net in } \omega_1 \times \omega_1 \psi \omega_2 \times \omega_2, \]
which is closed.

\[\text{the limit } (x, y) \text{ of } (x_\alpha, y) \text{ belongs to } \omega_1 \times \omega_1 \psi \omega_2 \times \omega_2. \]
i.e., both \((x, y) \in \omega_1 \times \omega_1 \psi \omega_1 \Rightarrow y \in \omega_1).\]

\[x \in \omega_1. \text{ Thus } \omega_1 \text{ is closed.} \]

Similarly \(\omega_2\) is closed.

Hence the result.

On the other hand, if \(\omega_1, \omega_2\) are disjoint closed proper complementary joint ideals of \(S\), at least one of which is non-singleton, then \(R = \omega_1 \times \omega_1 \psi \omega_2 \times \omega_2\) is a closed non-trivial subset of \(S \times S\).

\(R\) is an equivalence for,

for all \(a \in S\), either \(a \in \omega_1\) or in \(\omega_2\)

\[(\therefore \omega_1 \cup \omega_2 = B, \omega_1 \cap \omega_2 = \emptyset) \]

\[\therefore (a, a) \in \omega_1 \times \omega_1 \psi \omega_2 \times \omega_2 \]
i.e., \(\Delta \subseteq \omega_1 \times \omega_1 \psi \omega_2 \times \omega_2\)
i.e., \(R\) is reflexive.

Clearly \(R\) is symmetric. Also \(R\) is transitive for,

let \((a, b), (b, c) \in R\).
i.e., either both \(a, b \in \omega_1 \) or both \(a, b \in \omega_2 \)

and either both \(b, c \in \omega_1 \) or both \(b, c \in \omega_2 \).

Since \(\omega_1, \omega_2 \) are disjoint, the possible cases are

\[
\begin{align*}
\text{a, b } & \in \omega_1, \quad \text{b, c } \in \omega_1 \\
\text{and a, b } & \in \omega_2, \quad \text{b, c } \in \omega_2
\end{align*}
\]

\[
\therefore \quad (a, c) \in \omega_1 \times \omega_1 \uplus \omega_2 \times \omega_2
\]

Again,

\(R \) is compatible.

For,

since \(\omega_1, \omega_2 \) are joint ideals, by the definition, we have either

\[
\begin{align*}
\text{ax, bx } & \in \omega_1 \quad \text{or ax, bx } \in \omega_2 \\
\text{and either}
\end{align*}
\]

\[
\begin{align*}
\text{xa, xb } & \in \omega_1 \quad \text{or xa, xb } \in \omega_2 \\
\text{for all a, b } & \in \omega_1 \quad \text{or a, b } \in \omega_2 \\
\text{and for all } x & \in S.
\end{align*}
\]

i.e., \((ax, bx), (xa, xb) \in \omega_1 \times \omega_1 \uplus \omega_2 \times \omega_2 \).

Hence the result.
Remark 3.1.13.

A topological semigroup \(S \) with Bohr compactification \((\beta, B)\) has a semigroup compactification determined by a non-trivial closed congruence of the form \(\omega_1 \times \omega_1 \cup \omega_2 \times \omega_2 \) if and only if \(\omega_1 \) and \(\omega_2 \) are disjoint closed proper complementary joint ideals of \(B \), at least one of which is non-singleton.

Theorem 3.1.14.

A topological semigroup \(S \) has a non-trivial closed congruence of the form \(\bigcup_{i=1}^{n} \omega_i \times \omega_i \) if and only if \(\omega_i \)'s are disjoint closed proper complementary joint ideals of \(S \) (i.e., \(\omega_i \cap \omega_j = \emptyset \) for \(i \neq j \) and \(\bigcup_{i=1}^{n} \omega_i = S \)), at least one of which is non-singleton.

As a result we get

Theorem 3.1.15.

A topological semigroup \(S \) has an \(n \)-point compactification if and only if its Bohr compactification has \(n \) disjoint closed proper complementary joint ideals, at least one of which is non-singleton.
Remark 3.1.16.

A semigroup S has a set $\{\omega_i\}_{i=1}^n$ of finite number of joint weak ideals does not imply that any of the ω_i's is a weak ideal, nor does it imply that a proper subset of $\{\omega_i\}_{i=1}^n$ forms joint weak ideals.

Example.

$\mathbb{Z}_8 = \{0, 1, 2, 3, 4, 5, 6, 7\}$ with multiplication modulo 8 is a semigroup

(1) $\{\omega_1, \omega_2\} = \{\{1, 5\}, \{3, 7\}\}$ is a set of joint weak ideals, but neither $\{1, 5\}$ nor $\{3, 7\}$ is a weak ideal of \mathbb{Z}_8.

(2) $\{\omega_1, \omega_2, \omega_3\} = \{\{1, 7\}, \{2, 6\}, \{3, 5\}\}$ is a set of joint weak ideals, but $\{\{1, 7\}, \{3, 5\}\}$ is not a set of joint weak ideals. Also $\{1, 7\}, \{3, 5\}$ are not weak ideals.

Result 3.1.17

A semigroup S has a congruence of the form

$\bigcup_{i=1}^n (\omega_i \times \omega_i) \cup \triangle$ does not imply

(1) $(\omega_i \times \omega_i) \cup \triangle$ is a congruence on S for any $i=1, 2, \ldots, n$.

(2) $\bigcup_{j \in A} (\omega_j \times \omega_j) \cup \triangle$ is a congruence on S for some proper subset A of $\{1, 2, \ldots, n\}$.
Theorem 3.1.18.

A semigroup S has a congruence of the form

$$\bigcup_{i=1}^{n} (\bigcup \omega_i x \omega_i) \cup \Delta,$$

with ω_i's weak ideals (ideals), then S has a congruence of the form $$\bigcup_{j \in A} (\bigcup \omega_j x \omega_j) \cup \Delta,$$ where A is any proper subset of $\{1, 2, \ldots, n\}$, contained in

$$\bigcup_{i=1}^{n} (\bigcup \omega_i x \omega_i) \cup \Delta.$$

Proof.

Given $$\bigcup_{i=1}^{n} (\bigcup \omega_i x \omega_i) \cup \Delta$$ is a congruence, with ω_i's weak ideals (ideals).

i.e., ω_i's are disjoint closed proper weak ideals (ideals)

\therefore $$\bigcup (\omega_i x \omega_i) \cup \Delta$$ is a congruence for any $i=1, 2, \ldots, n$

Consider $$\{\omega_j\}_{j \in A},$$ where A is any proper subset of $\{1, 2, \ldots, n\}$.

Then $$\bigcup_{j \in A} (\omega_j x \omega_j) \cup \Delta$$ is a congruence for each $j \in A$.

i.e., $$\bigcup_{j \in A} (\omega_j x \omega_j) \cup \Delta$$ is a congruence contained in $$(\bigcup_{i=1}^{n} \omega_i x \omega_i) \cup \Delta,$$

since $$\{\omega_j\}_{j \in A} \subset \{\omega_i\}_{i=1}^{n}$$

Hence the result.
Theorem 3.1.19

Let S be a topological semigroup with closed
congruence $\bigcup_{i=1}^{n} \omega_{i} \times \omega_{i} \cup \triangle$, where ω_{i}'s are either
ideals or weak ideals. Then S has a closed congruence
of the form $\bigcup_{j \in A} \omega_{j} \times \omega_{j} \cup \triangle$ contained in $\bigcup_{i=1}^{n} \omega_{i} \times \omega_{i} \cup \triangle$,
where A is any proper subset of $\{1,2,\ldots,n\}$.

Proof.

Given $\bigcup_{i=1}^{n} \omega_{i} \times \omega_{i} \cup \triangle$ is a closed congruence
with ω_{i}'s are weak ideals (ideals).

i.e., ω_{i}'s are closed disjoint proper weak ideals, at
least one of which is non-singleton [3.1.9]
i.e., each $\omega_{i} \times \omega_{i} \cup \triangle$ is a closed congruence
i.e., $R = \bigcup_{j \in A} \omega_{j} \times \omega_{j} \cup \triangle$, where A is any proper
subset of $\{1,2,\ldots,n\}$ is a congruence contained in
$\bigcup_{i=1}^{n} \omega_{i} \times \omega_{i} \cup \triangle$ [3.1.18].

Also $R = \bigcup_{j \in A} \omega_{j} \times \omega_{j} \cup \triangle$ is closed, since ω_{i}'s are
closed in S and \triangle is closed in $S \times S$.
We obtained the following theorem about the lattice $K_1(S)$ of a given topological semigroup S with Bohr compactification (β,B).

Theorem 3.1.20.

Let S be a topological semigroup with Bohr compactification (β,B). If S has a semigroup compactification (α,A) determined by 'n' disjoint closed proper weak ideals $\{\omega_i\}_{i=1}^n$ of B, at least one of which is non-singleton, then there is a semigroup compactification in $K_1(S)$ strictly bigger than (α,A).

Proof.

Since $\{\omega_i\}_{i=1}^n$ are disjoint closed proper weak ideals (ideals) of B, at least one of which is non-singleton, B has a non-trivial closed congruence of the form

$$R = \left(\bigcup_{i=1}^n \omega_i \times \omega_j\right) \cup \Delta.$$

Let (α,A) denote the semigroup compactification determined by R. i.e., $(\beta,B) > (\alpha,A) \in K_1(S)$

Again since ω_i's are weak ideals (ideals) for each $i \in \{1,2,\ldots,n\}$, by theorem (3.1.19), B has a
closed congruence of the form

\[R' = \bigcup_{j \in I} \omega_j \times \omega_j \cup \Delta, \]

where \(I \) is any proper subset of \(\{1, 2, \ldots, n\} \) and \(R' \) is contained in \(R \).

Let \((\alpha_1, A_1)\) denotes semigroup compactification determined by \(R' \) and \((\beta, B) > (\alpha_1, A_1) > (\alpha, A)\).

Hence the result.

Remark 3.1.21.

Theorem (3.1.20) need not be true, if \((\alpha, A)\) is determined by \(\{\omega_i\}_{i=1}^{n} \) closed disjoint proper weak ideals, at least one of which is non-singleton.

For example,

Let \(S \) be a topological semigroup with \((\beta, B)\), where \(B = \mathbb{Z}_8 = \{0, 1, 2, 3, 4, 5, 6, 7\} \) with discrete topology and multiplication modulo 8.

(1) Here \(\{\omega_1, \omega_2, \omega_3\} = \{\{1, 7\}, \{2, 6\}, \{3, 5\}\} \) set of joint weak ideals and \(\mathbb{Z}_8 \) has a congruence

\[\{1, 7\} \times \{1, 7\} \cup \{2, 6\} \times \{2, 6\} \cup \{3, 5\} \times \{3, 5\} \cup \Delta \]

but \(\{1, 7\} \times \{1, 7\} \cup \{3, 5\} \times \{3, 5\} \cup \Delta \) are not congruences.
(2) \(\{\{1,5\}, \{3,7\}\}\) set of joint weak ideals and
\(\{1,5\} \times \{1,5\} \cup \{3,7\} \times \{3,7\} \cup \Delta\) is a congruence
but \(\{1,5\} \times \{1,5\} \cup \Delta\) and \(\{3,7\} \times \{3,7\} \cup \Delta\) are not congruences.

Remark 3.1.22.

A semigroup \(S\) has a set \(\{\omega_i\}_{i=1}^{n}\) of finite
number of complementary joint ideals does not imply that
any of the \(\omega_i\)'s is a weak ideal, nor does it imply that
a proper subset of \(\{\omega_i\}_{i=1}^{n}\) forms joint weak ideals, or
complementary joint ideals.

Example.

(1) Let \(S = \{e, a, f, b\}\) with multiplication defined
below is a semigroup

\[
\begin{array}{c|cccc}
 & e & a & f & b \\
\hline
 e & e & a & f & b \\
 a & a & e & b & f \\
 f & f & b & f & b \\
 b & b & f & b & f \\
\end{array}
\]

Here \(\{\omega_1, \omega_2\} = \{\{e, f\}, \{a, b\}\}\) is a set of complementary
joint ideals, but neither \(\{e, f\}\) nor \(\{a, b\}\) is a weak ideal.

(2) \(\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\}\) with multiplication modulo 6
is a semigroup.
Here \(\{w_1, w_2, w_3\} = \{\{2,5\}, \{1,4\}, \{0,3\}\} \) is a set of complementary joint ideals but \(\{\{2,5\}, \{1,4\}\} \) are not sets of joint weak ideals, nor complementary joint ideals.

From the above remark we have the following result.

Result 3.1.23.

A semigroup \(S \) has a congruence of the form

\[
\bigcup_{i=1}^{n} w_i \times w_i \text{ does not imply } (1) \bigcup_{j \in A} \omega_j \times \omega_j \cup A \text{ is a congruence on } S, \text{ where } A \text{ is any proper subset of } \{1,2,\ldots,n\}.
\]

(2) \(\bigcup_{j \in A} \omega_j \times \omega_j \) is a congruence on \(S \), where \(A \) is any proper subset of \(\{1,2,\ldots,n\} \).

Theorem 3.1.24.

A semigroup \(S \) has a non-trivial congruence of the form

\[
\bigcup_{i=1}^{n} w_i \times w_i \text{ with } w_i \text{'s weak ideals (ideals) then } S \text{ has a congruence of the form } (\bigcup_{j \in A} \omega_j \times \omega_j) \cup A, \text{ where } A \text{ is any proper subset of } \{1,2,\ldots,n\}. \text{ But } \bigcup_{j \in A} \omega_j \times \omega_j \text{ is not a congruence.}
Proof

Given \(\bigcup_{i=1}^{n} \omega_i \times \omega_i \) is a non-trivial congruence with \(\omega_i \)'s weak ideals (ideals).

i.e., \(\omega_i \)'s are disjoint proper weak ideals for each \(i = 1, \ldots, n \), at least one of which is non-singleton.

\[\therefore \ (\omega_i \times \omega_i) \cup \Delta \text{ is a congruence for each } i = 1, \ldots, n. \]

i.e., \((\omega_j \times \omega_j) \cup \Delta \text{ is a congruence for each } j \in A \), where

\(A \) is any proper subset of \(1, \ldots, n \).

\[\therefore \ (\bigcup_{j \in A} \omega_j \times \omega_j) \cup \Delta \text{ is a congruence contained in } \bigcup_{i=1}^{n} \omega_i \times \omega_i. \]

But \(\bigcup_{j \in A} \omega_j \times \omega_j \) is not a congruence, since it is not reflexive.

Theorem 3.1.25

Let \(S \) be a topological semigroup with non-trivial closed congruence \(\bigcup_{i=1}^{n} \omega_i \times \omega_i \), where \(\omega_i \)'s are weak ideals (ideals), then \(S \) has a closed congruence of the form \((\bigcup_{j \in A} \omega_j \times \omega_j) \cup \Delta \) contained in \(\bigcup_{i=1}^{n} \omega_i \times \omega_i \), where \(A \) is any proper subset of \(\{1, \ldots, n\} \).
Proof

This is immediate from (3.1.12) and (3.1.24).

Result 3.1.26.

A topological semigroup S with (β, B) has an n-point compactification does not imply that it has an $(n-1)$-point compactification, nor does it imply that there is a semigroup compactification strictly bigger than (α, A) and different from (β, B).

For example,

Let S be a topological semigroup with (β, B) where $B = \{e, a, f, b\}$ with discrete topology and multiplication defined below

<table>
<thead>
<tr>
<th></th>
<th>e</th>
<th>a</th>
<th>f</th>
<th>b</th>
</tr>
</thead>
<tbody>
<tr>
<td>e</td>
<td>e</td>
<td>a</td>
<td>f</td>
<td>b</td>
</tr>
<tr>
<td>a</td>
<td>a</td>
<td>e</td>
<td>b</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>b</td>
<td>f</td>
<td>b</td>
</tr>
<tr>
<td>b</td>
<td>b</td>
<td>f</td>
<td>b</td>
<td>f</td>
</tr>
</tbody>
</table>

Closed congruences on B are

\[
R_1 = \Delta
\]

\[
R_2 = \{f, b\} \times \{f, b\} \cup \Delta
\]

\[
R_3 = \{e, f\} \times \{e, f\} \cup \{a, b\} \times \{a, b\}
\]

\[
R_4 = \{e, a\} \times \{e, a\} \cup \{f, b\} \times \{f, b\}
\]

\[
R_5 = B \times B
\]
R_3 determines a 2-point compactification say $(α, A)$, where $\{\{e,f\}, \{a,b\}\}$ is a set of closed proper disjoint non-singleton complementary joint ideals but $\{e,f\} \times \{e,f\}$ and $\{a,b\} \times \{a,b\}$ are not closed congruences on B.

i.e., two point compactification does not imply the existence of one-point compactification.

Also,

$\{e,f\} \times \{e,f\} \cup \Delta$ and $\{a,b\} \times \{a,b\} \cup \Delta$ are not closed congruences contained in R_3. So 2-point compactification does not imply there exist a semigroup compactification strictly bigger than $(α, A)$ and different from $(β, B)$.

Next theorem shows that if a topological semigroup S with $(β, B)$ has an n-point compactification $(α, A)$ determined by 'n' weak ideals (ideals) of B, then there exists semigroup compactification strictly bigger than $(α, A)$. And in this case also it does not imply that S has an $(n-1)$-point compactification.
Theorem 3.1.27.

A topological semigroup S with (β, B) has an n-point compactification (α, A) determined by 'n' weak ideals (ideals) of B, then there exists semigroup compactification strictly bigger than (α, A). And in this case also it does not imply that S has an $(n-1)$-point compactification.

Proof.

Since (α, A) is an n-point compactification of S, (α, A) is determined by a non-trivial closed congruence of the form $\bigcup_{i=1}^{n} \omega_i \times \omega_i$, where ω_i's closed proper complementary joint ideals of B, at least one of which is non-singleton. Also given that ω_i's are weak ideals (ideals).

i.e., ω_i's are closed disjoint proper weak ideals (ideals) of B, at least one of which is non-singleton.

By theorem (3.1.19) B has a closed congruence of the form $\bigcup_{j \in A} (\omega_j \times \omega_j) \cup \Delta$, where A is any proper subset of $\{1, 2, \ldots, n\}$.

Also it determines a semigroup compactification (α_1, A_1) such that $(\beta, B) \succ (\alpha_1, A_1) \succ (\alpha, A)$.

i.e., there is a semigroup compactification strictly bigger than (α, A).
But it does not imply that S has an $(n-1)$-point compactification.

For example,

Let S be a topological semigroup with (β,B), where $B = \{\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, 1\}$ with discrete topology and multiplication defined by $xy = \max \{\frac{1}{2}, xy\}$

Here S has a 2-point compactification determined by

$$R = \left\{ \frac{1}{2}, 1 \right\} \times \left\{ \frac{1}{2}, 1 \right\} \cup \left\{ \frac{1}{3}, \frac{1}{4} \right\} \times \left\{ \frac{1}{3}, \frac{1}{4} \right\}$$

where,

$$\left\{ \left\{ \frac{1}{2}, 1 \right\}, \left\{ \frac{1}{3}, \frac{1}{4} \right\} \right\}$$

is a set of disjoint proper closed non-singleton complementary joint ideals.

Also $\left\{ \frac{1}{2}, 1 \right\}$ and $\frac{1}{3}, \frac{1}{4}$ are weak ideals.

But $\left\{ \frac{1}{2}, 1 \right\} \times \left\{ \frac{1}{2}, 1 \right\}$ and $\left\{ \frac{1}{3}, \frac{1}{4} \right\} \times \left\{ \frac{1}{3}, \frac{1}{4} \right\}$ are not congruences.

.'. 2-point compactifications determined by weak ideals does not imply existence of one-point compactification.
3.2 Some results about atoms and dual atoms of $K_1(S)$

In this section, we describe the dual atoms and atoms of $K_1(S)$, family of all semigroup compactifications of a topological semigroup S with (β, B), where B is finite.

An element $(\alpha, A) \in K_1(S)$ is a dual atom of $K_1(S)$ provided $(\alpha, A) < (\beta, B)$ and there does not exist $(\alpha_1, A_1) \in K_1(S)$ for which $(\alpha, A) < (\alpha_1, A_1) < (\beta, B)$.

An element $(\alpha_0, A_0) \in K_1(S)$ is an atom of $K_1(S)$ provided $(\alpha_0, A_0) > (\alpha, \{0\})$, where $(\alpha, \{0\})$ is the smallest semigroup compactification of S and there does not exist $(\alpha_1, A_1) \in K_1(S)$ for which $(\alpha_0, A_0) > (\alpha_1, A_1) > (\alpha, \{0\})$.

Theorem 3.2.1.

Let S be a topological semigroup with Bohr compactification (β, B), where B is finite, and ω^* be the collection of all weak ideals, joint weak ideals, complementary joint ideals of B. If there exists a closed non-singleton proper weak ideal ω minimal (maximal) in ω^*, then (α, A) the semigroup compactification determined by ω is a dual atom (atom) of $K_1(S)$.

Proof.

Let $|B| = n$, where n is finite and ω^* be the collection of all weak ideals, joint weak ideals, complementary joint ideals of B.
(a) Let 'w' be a closed non-singleton proper weak ideal of B minimal in w*.

i.e., there exists no weak ideal, no joint weak ideals, no complementary joint ideals properly contained in ω and (ωxω) ⨈ Δ is a non-trivial closed congruence on B.

i.e., Δ ⊆ (ωxω) ⨈ Δ, and there exists no non-trivial closed congruence properly contained in (ωxω) ⨈ Δ.

If not, let R' be a non-trivial closed congruence properly contained in (ωxω) ⨈ Δ.

i.e., R' ⊆ (ωxω) ⨈ Δ ⊆ BxB

Since R' is a non-trivial closed congruence, R' is determined by at least one non-singleton subset A (say) of B; if not, let |A| = 1, R' determined by A is Δ, this is not possible since R' ≠ Δ. Then the possible cases of R' are the following:

Case-1

R' is determined by a subset A of B with

1 < |A| < n

If |A| = 2, i.e., A = {a, b} (say)

Then R' = {a, b} × {a, b} ⨈ Δ ⊆ (ωxω) ⨈ Δ
Since \(a \neq b \), \(\{a, b\} \subset \omega \)
and since \(R' \) is a congruence, for all \(a, b \in A \)
\(ax, bx \in A \) or \(ax = bx \)
and \(xa, xb \in A \) or \(xa = xb \) for all \(x \in B \).

i.e., \(A = \{a, b\} \) is a weak ideal, also we have
\(\{a, b\} \subset \omega \), which is a contradiction.

Similarly we have a contradiction if \(R' \) is
determined by any non-empty subset \(A \) of \(B \), with
\(1 < |A| < n \).

Case-2

If \(R' \) is determined by two non-singleton subsets
say \(A_1 = \{a, b\} \), \(A_2 = \{c, d\} \)

i.e., \(\{a, b\} \times \{a, b\} \cup \{c, d\} \times \{c, d\} \cup \Delta \) is a closed
congruence contained in \(\omega \times \omega \cup \Delta \)

Since \(a \neq b \), \(c \neq d \), \(\{a, b, c, d\} \subset \omega \)
and since \(R' \) is a congruence, for all \(x \in B \)
and for all \(a, b \in \{a, b\} \) or in \(\{c, d\} \)
\(ax, bx \in \{a, b\} \) or \(ax, bx \in \{c, d\} \) or \(ax = bx \)
and \(xa, xb \in \{a, b\} \) or \(xa, xb \in \{c, d\} \) or \(xa = xb \)
i.e. \{\{a,b\}, \{c,d\}\} is a set of joint weak ideals contained in \(\omega\), which is a contradiction.

Similarly, we have a contradiction if \(R'\) is determined by any collection of subsets of \(B\), at least one of which is non-singleton.

Case-3

If \(R'\) is determined by any two non-singleton subsets \(A_1, A_2\) of \(B\) such that \(A_1 \cup A_2 = B\).

Let \(A_1 = \{a,b\}, A_2 = \{c,d\}\)

\[R' = \{a,b\} \times \{a,b\} \cup \{c,d\} \times \{c,d\} \] is a closed congruence and

\[\{a,b\} \times \{a,b\} \cup \{c,d\} \times \{c,d\} \subseteq \omega \times \omega \Delta \]

Since \(a \neq b, c \neq d\), \(\{a,b,c,d\}\) \(\subseteq \omega\)

Since \(R'\) is a congruence for all \(x \in B\)

and for all \(a,b \in A_1\) or in \(A_2\)

\[ax, bx \in A_1 \text{ or } ax, bx \in A_2 \]

and \(xa, xb \in A_1\) or \(xa, xb \in A_2\)

i.e., \(\{A_1, A_2\}\) is a set of complementary joint ideals contained in \(\omega\), which is a contradiction.
Similarly we have a contradiction, if \(R' \) is determined by any disjoint collection of subsets \(B \), whose union is \(B \), at least one of which is non-singleton.

Thus in all these possible cases, there exists no non-trivial closed congruence properly contained in \((\omega \times \omega) \cup \Delta\).

\[
\therefore (\alpha, A) \text{ the semigroup compactification determined by } (\omega \times \omega) \cup \Delta \text{ is a dual atom of } K_1(S).
\]

(b) Let \(\omega \) be a closed non-singleton proper weak ideal of \(B \) maximal in \(\omega^* \).

\[
\therefore \Delta \subseteq (\omega \times \omega) \cup \Delta \subseteq B \times B \text{ is a closed congruence on } B \text{ and there exists no proper closed congruence properly contains } (\omega \times \omega) \cup \Delta.
\]

If not, let \(R' \) be a closed congruence properly contains \((\omega \times \omega) \cup \Delta\) i.e., \(\Delta \subseteq (\omega \times \omega) \cup \Delta \subseteq R' \subseteq B \times B \)

Since \(R' \) is non-trivial, the possible cases of \(R' \) are same as that in (a) and we have a contradiction

1. if \(R' \) is determined by any non-singleton subset \(A \) of \(B \) with \(1 < |A| < n \).

2. if \(R' \) is determined by any disjoint collection of subsets of \(B \) at least one of which is non-singleton.
there exists no proper closed congruence properly contains\((\omega \times \omega) \cup \triangle\)

(\alpha, A) the semigroup compactification corresponding to \((\omega \times \omega) \cup \triangle\) is an atom of \(K_1(S)\).

By similar argument we have the following.

Remark-1

If \(\omega\) is a set of closed joint weak ideals of \(B\) at least one of which is non-singleton minimal (maximal) in \(\omega^*\), then \((\alpha, A)\) the semigroup compactification corresponding to \((\omega \times \omega) \cup \triangle\) is a dual atom (atom) of \(K_1(S)\).

Remark-2

If \(\omega\) is a set of closed complementary joint ideals of \(B\) at least one of which is non-singleton minimal (maximal) in \(\omega^*\), then \((\alpha, A)\) the semigroup compactification corresponding to \((\omega \times \omega) \cup \triangle\) is a dual atom (atom) of \(K_1(S)\).