List of Figures

Figure 2.1: Chemistry of tropospheric ozone formation.

Figure 2.2: Photochemical production of ozone (a) a polluted atmosphere (b) a clean atmosphere.

Figure 3.1: Map of Delhi and Faridabad showing eleven field sites.

Figure 4.1: Average hourly ground level ozone concentration at Delhi - Faridabad sites during May to July, 1998.

Figure 4.2: Average hourly ground level ozone concentration at Delhi - Faridabad sites during January to April, 1999.

Figure 4.3: A comparison of culm length between N-Tr and EDU-Tr plants of *Triticum aestivum* grown at field sites.

Figure 4.4: A comparison of culm number between N-Tr and EDU-Tr plants of *Triticum aestivum* grown at field sites.

Figure 4.5: A comparison of shoot biomass between N-Tr and EDU-Tr plants of *Triticum aestivum* grown at field sites.

Figure 4.6: A comparison of root length between N-Tr and EDU-Tr plants of *Triticum aestivum* grown at field sites.

Figure 4.7: A comparison of root biomass between N-Tr and EDU-Tr plants of *Triticum aestivum* grown at field sites.

Figure 4.8: A comparison of number of spikes per plant between N-Tr and EDU-Tr plants of *Triticum aestivum* grown at field sites.

Figure 4.9: A comparison of spike length between N-Tr and EDU-Tr plants of *Triticum aestivum* grown at field sites.

Figure 4.10: A comparison between number of grains per spike between N-Tr and EDU-Tr plants of *Triticum aestivum* grown at field sites.

Figure 4.11: A comparison of grain weight per plant between N-Tr and EDU-Tr plants of *Triticum aestivum* grown at field sites.

Figure 4.12: A comparison of total chlorophyll content between N-Tr and EDU-Tr plants of *Triticum aestivum* grown at field sites.

Figure 4.13: A comparison of ascorbic acid content between N-Tr and EDU-Tr plants of *Triticum aestivum* grown at field sites.

Figure 4.14: A comparison of culm length between ozone fumigated N-Tr and EDU-Tr plants of *Triticum aestivum*.

Figure 4.15: A comparison of culm number between ozone fumigated N-Tr and EDU-Tr plants of *Triticum aestivum*.
Figure 4.16: A comparison of shoot biomass between ozone fumigated N-Tr and EDU-Tr plants of *Triticum aestivum*.

Figure 4.17: A comparison of root length between ozone fumigated N-Tr and EDU-Tr plants of *Triticum aestivum*.

Figure 4.18: A comparison of root biomass between ozone fumigated N-Tr and EDU-Tr plants of *Triticum aestivum*.

Figure 4.19: A comparison of spikes per plant between ozone fumigated N-Tr and EDU-Tr plants of *Triticum aestivum*.

Figure 4.20: A comparison of spike length between ozone fumigated N-Tr and EDU-Tr plants of *Triticum aestivum*.

Figure 4.21: A comparison of grains per spike between ozone fumigated N-Tr and EDU-Tr plants of *Triticum aestivum*.

Figure 4.22: A comparison of grain weight per plant between ozone fumigated N-Tr and EDU-Tr plants of *Triticum aestivum*.

Figure 4.23: A comparison of total chlorophyll content between ozone fumigated N-Tr and EDU-Tr plants of *Triticum aestivum*.

Figure 4.24: A comparison of ascorbic acid content between ozone fumigated N-Tr and EDU-Tr plants of *Triticum aestivum*.

Figure 4.25: A comparison of shoot length between N-Tr and EDU-Tr plants of *Phaseolus aureus* grown at field sites.

Figure 4.26: A comparison of shoot biomass between N-Tr and EDU-Tr plants of *Phaseolus aureus* grown at field sites.

Figure 4.27: A comparison of root length between N-Tr and EDU-Tr plants of *Phaseolus aureus* grown at field sites.

Figure 4.28: A comparison of root biomass of N-Tr and EDU-Tr plants between N-Tr and EDU-Tr plants of *Phaseolus aureus* grown at field sites.

Figure 4.29: A comparison of pods per plant between N-Tr and EDU-Tr plants of *Phaseolus aureus* grown at field sites.

Figure 4.30: A comparison of pod length between N-Tr and EDU-Tr plants of *Phaseolus aureus* grown at field sites.

Figure 4.31: A comparison of seeds per pod between N-Tr and EDU-Tr plants of *Phaseolus aureus* grown at field sites.

Figure 4.32: A comparison of seed weight per plant between N-Tr and EDU-Tr plants of *Phaseolus aureus* grown at field sites.

Figure 4.33: A comparison of total chlorophyll content between N-Tr and EDU-Tr plants of *Phaseolus aureus* grown at field sites.
Figure 4.34: A comparison of ascorbic acid content between N-Tr and EDU-Tr plants of *Phaseolus aureus* grown at field sites.

Figure 4.35: A comparison of shoot length between ozone fumigated N-Tr and EDU-Tr plants of *Phaseolus aureus*.

Figure 4.36: A comparison of shoot biomass between ozone fumigated N-Tr and EDU-Tr plants of *Phaseolus aureus*.

Figure 4.37: A comparison of root length between ozone fumigated N-Tr and EDU-Tr plants of *Phaseolus aureus*.

Figure 4.38: A comparison of root biomass between ozone fumigated N-Tr and EDU-Tr plants of *Phaseolus aureus*.

Figure 4.39: A comparison of pods per plant between ozone fumigated N-Tr and EDU-Tr plants of *Phaseolus aureus*.

Figure 4.40: A comparison of pod length between ozone fumigated N-Tr and EDU-Tr plants of *Phaseolus aureus*.

Figure 4.41: A comparison of seeds per pod between ozone fumigated N-Tr and EDU-Tr plants of *Phaseolus aureus*.

Figure 4.42: A comparison of seed weight per plant between ozone fumigated N-Tr and EDU-Tr plants of *Phaseolus aureus*.

Figure 4.43: A comparison of total chlorophyll content between ozone fumigated N-Tr and EDU-Tr plants of *Phaseolus aureus*.

Figure 4.44: A comparison of ascorbic acid content between ozone fumigated N-Tr and EDU-Tr plants of *Phaseolus aureus*.

Figure 4.45: A comparison of shoot length between N-Tr and EDU-Tr plants of *Brassica campestris* grown at field sites.

Figure 4.46: A comparison of number of branches per plant between N-Tr and EDU-Tr plants of *Brassica campestris* grown at field sites.

Figure 4.47: A comparison of shoot biomass between N-Tr and EDU-Tr plants of *Brassica campestris* grown at field sites.

Figure 4.48: A comparison of root length between N-Tr and EDU-Tr plants of *Brassica campestris* grown at field sites.

Figure 4.49: A comparison of root biomass between N-Tr and EDU-Tr plants of *Brassica campestris* grown at field sites.

Figure 4.50: A comparison of pods per plant between N-Tr and EDU-Tr plants of *Brassica campestris* grown at field sites.

Figure 4.51: A comparison of pod length between N-Tr and EDU-Tr plants of *Brassica campestris* grown at field sites.
Figure 4.52: A comparison of seeds per pod between N-Tr and EDU-Tr plants of Brassica campestris grown at field sites.

Figure 4.53: A comparison of seed weight per plant between N-Tr and EDU-Tr plants of Brassica campestris grown at field sites.

Figure 4.54: A comparison of total chlorophyll content between N-Tr and EDU-Tr plants of Brassica campestris grown at field sites.

Figure 4.55: A comparison of ascorbic acid content between N-Tr and EDU-Tr plants of Brassica campestris grown at field sites.

Figure 4.56: A comparison of shoot length between ozone fumigated N-Tr and EDU-Tr plants of Brassica campestris.

Figure 4.57: A comparison of number of branches per plant between ozone fumigated N-Tr and EDU-Tr plants of Brassica campestris.

Figure 4.58: A comparison of shoot biomass between ozone fumigated N-Tr and EDU-Tr plants of Brassica campestris.

Figure 4.59: A comparison of root length between ozone fumigated N-Tr and EDU-Tr plants of Brassica campestris.

Figure 4.60: A comparison of root biomass between ozone fumigated N-Tr and EDU-Tr plants of Brassica campestris.

Figure 4.61: A comparison of pods per plant between ozone fumigated N-Tr and EDU-Tr plants of Brassica campestris.

Figure 4.62: A comparison of pod length between ozone fumigated N-Tr and EDU-Tr plants of Brassica campestris.

Figure 4.63: A comparison of seeds per pod between ozone fumigated N-Tr and EDU-Tr plants of Brassica campestris.

Figure 4.64: A comparison of seed weight per plant between ozone fumigated N-Tr and EDU-Tr plants of Brassica campestris.

Figure 4.65: A comparison of total chlorophyll content between ozone fumigated N-Tr and EDU-Tr plants of Brassica campestris.

Figure 4.66: A comparison of ascorbic acid content between ozone fumigated N-Tr and EDU-Tr plants of Brassica campestris.

Figure 4.67: A comparison of leaf number between N-Tr and EDU-Tr plants of Spinacia oleracea grown at field sites.

Figure 4.68: A comparison of number of senescent leaves between N-Tr and EDU-Tr plants of Spinacia oleracea grown at field sites.

Figure 4.69: A comparison of leaf area between N-Tr and EDU-Tr plants of Spinacia oleracea grown at field sites.
Figure 4.70: A comparison of root biomass between N-Tr and EDU-Tr plants of *Spinacia oleracea* grown at field sites.

Figure 4.71: A comparison of plant biomass between N-Tr and EDU-Tr plants of *Spinacia oleracea* grown at field sites.

Figure 4.72: A comparison of total chlorophyll content between N-Tr and EDU-Tr plants of *Spinacia oleracea* grown at field sites.

Figure 4.73: A comparison of ascorbic acid content between N-Tr and EDU-Tr plants of *Spinacia oleracea* grown at field sites.

Figure 4.74: A comparison of leaf number between ozone fumigated N-Tr and EDU-Tr plants of *Spinacia oleracea*.

Figure 4.75: A comparison of number of senescent leaves between ozone fumigated N-Tr and EDU-Tr plants of *Spinacia oleracea*.

Figure 4.76: A comparison of leaf area between ozone fumigated N-Tr and EDU-Tr plants of *Spinacia oleracea*.

Figure 4.77: A comparison of root biomass between ozone fumigated N-Tr and EDU-Tr plants of *Spinacia oleracea*.

Figure 4.78: A comparison of plant biomass between ozone fumigated N-Tr and EDU-Tr plants of *Spinacia oleracea*.

Figure 4.79: A comparison of total chlorophyll content between ozone fumigated N-Tr and EDU-Tr plants of *Spinacia oleracea*.

Figure 4.80: A comparison of ascorbic acid content between ozone fumigated N-Tr and EDU-Tr plants of *Spinacia oleracea*.

Figure 5.1: Ground level ozone concentration at Delhi-Faridabad during May to July, 1998 from N-W to S-E direction.

Figure 5.2: Ground level ozone concentration at Delhi-Faridabad during January to April, 1999 from N-W to S-E direction.

Figure 5.3: A comparison of monthly variation of ozone concentration at field sites in Delhi-Faridabad (1 hr. avg) with various standards prescribed by different agencies.

Figure 5.4: A comparison (1 hr. avg) of ozone levels at different sites in Delhi Faridabad with ozone standards prescribed by various agencies.

Figure 5.5: A comparison of O₃, TVOC and NO₂ concentrations at different Delhi - Faridabad sites.

Figure 5.6: Relationship between TVOC and Nitrogen dioxide at different sites.

Figure 5.7: Relationship between Ozone and Nitrogen dioxide at different sites.

Figure 5.8: Relationship between Ozone and TVOC at different sites.
Figure 5.9: Relationship between ambient ozone and reduction (%) in culm length in *Triticum aestivum*.

Figure 5.10: Relationship between ambient ozone and reduction (%) in culm number in *Triticum aestivum*.

Figure 5.11: Relationship between ambient ozone and reduction (%) in shoot biomass in *Triticum aestivum*.

Figure 5.12: Relationship between ambient ozone and reduction (%) in root length in *Triticum aestivum*.

Figure 5.13: Relationship between ambient ozone and reduction (%) in root biomass in *Triticum aestivum*.

Figure 5.14: Relationship between ambient ozone and reduction (%) in spikes per plant in *Triticum aestivum*.

Figure 5.15: Relationship between ambient ozone and reduction (%) in spike size in *Triticum aestivum*.

Figure 5.16: Relationship between ambient ozone and reduction (%) in grains per spike in *Triticum aestivum*.

Figure 5.17: Relationship between ambient ozone and reduction (%) in grain weight per plant in *Triticum aestivum*.

Figure 5.18: Relationship between ambient ozone and reduction (%) in total chlorophyll content in *Triticum aestivum*.

Figure 5.19: Relationship between ambient ozone and reduction (%) in ascorbic acid content in *Triticum aestivum*.

Figure 5.20: Relationship between ambient ozone and reduction (%) in shoot length in *Phaseolus aureus*.

Figure 5.21: Relationship between ambient ozone and reduction (%) in shoot biomass in *Phaseolus aureus*.

Figure 5.22: Relationship between ambient ozone and reduction (%) in root length in Phaseolus aureus.

Figure 5.23: Relationship between ambient ozone and reduction (%) in root biomass in *Phaseolus aureus*.

Figure 5.24: Relationship between ambient ozone and reduction (%) in pods per plant in *Phaseolus aureus*.

Figure 5.25: Relationship between ambient ozone and reduction (%) in pod size in *Phaseolus aureus*.

Figure 5.26: Relationship between ambient ozone and reduction (%) in seeds per pod in *Phaseolus aureus*.
Figure 5.27: Relationship between ambient ozone and reduction (%) in seed weight per plant in *Phaseolus aureus*.

Figure 5.28: Relationship between the ambient ozone and reduction (%) in total chlorophyll content in *Phaseolus aureus*.

Figure 5.29: Relationship between the ambient ozone and reduction (%) in ascorbic acid content in *Phaseolus aureus*.

Figure 5.30: Relationship between ambient ozone and reduction (%) in shoot length in *Brassica campestris*.

Figure 5.31: Relationship between ambient ozone and reduction (%) in number of branches in *Brassica campestris*.

Figure 5.32: Relationship between ambient ozone and reduction (%) in shoot biomass in *Brassica campestris*.

Figure 5.33: Relationship between ambient ozone and reduction (%) in root length in *Brassica campestris*.

Figure 5.34: Relationship between ambient ozone and reduction (%) in root biomass in *Brassica campestris*.

Figure 5.35: Relationship between ambient ozone and reduction (%) in pods per plant in *Brassica campestris*.

Figure 5.36: Relationship between ambient ozone and reduction (%) in pod size in *Brassica campestris*.

Figure 5.37: Relationship between ambient ozone and reduction (%) in seeds per pod in *Brassica campestris*.

Figure 5.38: Relationship between ambient ozone and reduction (%) in seed weight per plant in *Brassica campestris*.

Figure 5.39: Relationship between ambient ozone and reduction (%) in total chlorophyll content in *Brassica campestris*.

Figure 5.40: Relationship between ambient ozone and reduction (%) in ascorbic acid content in *Brassica campestris*.

Figure 5.41: Relationship between ambient ozone and reduction (%) in leaf number in *Spinacia oleracea*.

Figure 5.42: Relationship between ambient ozone and reduction (%) in number of senescent leaves in *Spinacia oleracea*.

Figure 5.43: Relationship between ambient ozone and reduction (%) in leaf area of *Spinacia oleracea*.

Figure 5.44: Relationship between ambient ozone and reduction (%) in root biomass in *Spinacia oleracea*.
Figure 5.45: Relationship between ambient ozone and reduction (%) in plant biomass in *Spinacia oleracea*.

Figure 5.46: Relationship between ambient ozone and reduction (%) in total chlorophyll content in *Spinacia oleracea*.

Figure 5.47: Relationship between ambient ozone and reduction (%) in ascorbic acid content in *Spinacia oleracea*.

Figure 5.48: A comparison of culm length/shoot length in *Triticum, Phaseolus* and *Brassica* plants in field and experimental fumigation studies.

Figure 5.49: A comparison of root length in *Triticum, Phaseolus* and *Brassica* plants in field and experimental fumigation studies.

Figure 5.50: A comparison of shoot biomass in *Triticum, Phaseolus, Brassica* and *Spinacia* plants in field and experimental fumigation studies.

Figure 5.51: A comparison of root biomass in *Triticum, Phaseolus, Brassica* and *Spinacia* plants in field and experimental fumigation studies.

Figure 5.52: A comparison of total chlorophyll content in *Triticum, Phaseolus, Brassica* and *Spinacia* plants in field and experimental fumigation studies.

Figure 5.53: A comparison of ascorbic acid content in *Triticum, Phaseolus, Brassica* and *Spinacia* plants in field and experimental fumigation studies.

Figure 5.54: A comparison of seed weight per plant in *Triticum, Phaseolus* and *Brassica* plants in field and experimental fumigation studies.

Figure 6.1: A comparison of per hectare percentage increase in fertilizer consumption and wheat production in India, 1991-92 - 2002-03 (Base year 1990-91).
List of Tables

Table 2.1: Reactions leading to ozone synthesis.

Table 2.2: Estimate of production and loss of total tropospheric \(\text{O}_3\) (cm\(^2\) s\(^{-1}\)) in the two Hemispheres.

Table 2.3: Estimated annual global emission of \(\text{O}_3\) precursors for the years 1860, 1993 and 2025.

Table 2.4: Concentrations of ground level ozone reported from different stations in India.

Table 2.5: A comparison of ground level ozone build-up rate at few locations in India.

Table 2.6: Ground level ozone at different sites in Delhi 1989-2000.

Table 2.7: Emission of \(\text{O}_3\) precursors from transport sector 1990-91 to 2009-10.

Table 2.8: Acute and chronic injury symptoms of ozone.

Table 2.9: Illustrative examples of foliar ozone injury in crop plants.

Table 2.10: Sensitivity of crop plants to ozone.

Table 2.11: Yield loss suffered by different crops from 8 h ozone exposure for 90days.

Table 2.12: Ozone concentrations (averaged over 7 hour a day through out the growing season) required to reduce 10% of the crop yield.

Table 2.13: A list of ozone fumigation studies carried out in India.

Table 2.14: A list of chemicals tested against ozone injury to protect plants.

Table 2.15: A comprehensive list of studies on ethylene diurea (EDU) against ozone injury in crop plants.

Table 3.1: A comparative description of the eleven field sites (S1-S11).

Table 4.1: Ground level ozone concentration (\(\mu g/m^3\)) at Delhi-Faridabad sites during May-July, 1998.

Table 4.2: Ground level ozone concentration (\(\mu g/m^3\)) at different Delhi-Faridabad sites during January- April, 1999.

Table 4.3: Performance of \textit{Triticum aestivum} plants with and without EDU exposed to ozone at field sites and in fumigation chamber.

Table 4.4: A comparison between the percentage differences in average values of different parameters in \textit{Triticum aestivum} plants grown with and without EDU exposed to 69.07-158.33\(\mu g/m^3\) of ground level ozone and fumigated with 150\(\mu g/m^3\) ozone.

Table 4.5: Performance of \textit{Phaseolus aureus} plants with and without-EDU exposed to ozone at field sites and fumigation chamber.

Table 4.6: A comparison between the percentage differences in average values of different parameters in \textit{Phaseolus aureus} plants grown with and without EDU exposed to 35.72-50.20\(\mu g/m^3\) of ground level ozone and fumigated with 150\(\mu g/m^3\) ozone.
Table 4.7: Performance of Brassica campestris plants with and without-EDU exposed to ozone at field sites and fumigation chamber.

Table 4.8: A comparison between the percentage differences in average values of different parameters in Brassica campestris plants grown with and without EDU exposed to 69.07-158.33μg/m³ of ground level ozone and fumigated with 150μg/m³ ozone.

Table 4.9: Performance of Spinacia oleracea plants with and without-EDU exposed to ozone at field sites and fumigation chamber.

Table 4.10: A comparison between the percentage differences in average values of different parameters in Spinacia oleracea plants grown with and without EDU exposed to 35.72-50.20μg/m³ of ground level ozone and fumigated with 150μg/m³ ozone.

Table 5.1: Percentage exceedence of ozone levels at individual sites over the ozone standards prescribed by different agencies.

Table 5.2: Values of ground level ozone reported for different locations in India.

Table 5.3: Ozone and ozone forming precursors at different sites during January to April, 1999.

Table 5.4: The relationship between average ground level ozone concentration and average reduction in different parameters of Triticum aestivum plants grown at field sites in Delhi-Faridabad.

Table 5.5: The relationship between average ground level ozone concentration and average reduction in different parameters of Phaseolus aureus plants grown at field sites in Delhi-Faridabad.

Table 5.6: The relationship between average ground level ozone concentration and average reduction in different parameters of Brassica campestris plants grown at field sites in Delhi-Faridabad.

Table 5.7: The relationship between average ground level ozone concentration and average reduction in different parameters of Spinacia oleracea plants grown at field sites in Delhi-Faridabad.

Table 5.8: A comparative percentage difference in the performance of plants exposed to ground level ozone in field with and without EDU treatment plants.

Table 5.9: A comparative percentage difference in the performance of plants exposed to 150μg/m³ of ozone with and without EDU treatment plants in experimental fumigation study.

Table 6.1: Average hourly ground level ozone concentration and average yield reduction in four crops plants at Delhi-Faridabad.

Table 6.2: Yield loss in different crop plants from ground level ozone reported in literature.

Table 6.3: Estimated crop loss (‘000 tonnes) from ozone in relation to five Indian cities.

Table 6.4: Crop statistics for wheat, moong and mustard.

Table 6.5: Estimated yield and economic loss for wheat (Triticum aestivum), moong (Phaseolus aureus) and mustard (Brassica campestris) from 48 μg/m³ of ground level ozone.
List of Plates

Plate 2.1: KIMOTO Handy Sampler Model HS-7.

Plate 2.2: Continuous Ozone Monitor Model ML-9810B (Monitor Labs, USA).

Plate 2.3: BARC Model Ozone Generator with Rotameter.

Plate 2.4: Experimental Plants Exposed at S-1 (Bakoli) Site.

Plate 2.5: Experimental Plants Exposed at S-3 (J.Temple) Site.

Plate 2.6: Experimental Plants Exposed at S-4 (Libaspur) Site.

Plate 2.7: Experimental Plants Exposed at S-9 (IOC-Faridabad) Site.

Plate 4.1: EDU-treated (EDU-Tr) and non-treated (N-Tr) Wheat (*Triticum aestivum*) Plants at S-1 (Bakoli) Site.

Plate 4.2: EDU-treated (EDU-Tr) and non-treated (N-Tr) Wheat (*Triticum aestivum*) Plants at S-7 (Badarpur) Site.

Plate 4.3: A Comparison of Wheat (*Triticum aestivum*) Grains of EDU-treated (EDU-TR) and non-treated (N-TR) Plants Grown at S-1 (Bakoli) Site.

Plate 4.4: Injury Symptoms on Leaves of Moong (*Phaseolus aureus*) Plants Exposed to 150μg/m³ of Ozone.

Plate 4.5: EDU-treated (EDU-Tr) and non-treated (N-Tr) Mustard (*Brassica campestris*) Plants Grown at S-7 (Badarpur) Site.

Plate 4.6: EDU-treated (EDU-Tr) and non-treated (N-Tr) Mustard (*Brassica campestris*) Plants Grown at S-10 (CRI-Faridabad) Site.

Plate 4.7: A Comparison of Pod Length between EDU-treated (EDU) and non-treated (N-Tr) Mustard (*Brassica campestris*) Plants Grown at Different Field Sites.

Plate 4.8: A Comparison of Seeds between EDU-treated (EDU-TR) and non-treated (N-TR) Mustard (*Brassica campestris*) Plants Grown at S-1 (Bakoli) and S-4 (Libaspur) Sites.

Plate 4.9: EDU-treated (EDU) and non-treated (Non-EDU) Paalak (*Spinacia oleracea*) Plants Grown at S-6 (JNU) Site.