Chapter 1: Introduction

1.1 General overview .. 1
1.2 Motivation of the research ... 4
1.3 Maintenance concept ... 5
 1.3.1 Preventive maintenance ... 6
 1.3.2 Reliability centered maintenance 7
 1.3.3 Proactive maintenance ... 7
 1.3.4 Condition based maintenance 7
1.4 Maintenance performance measurement 8
 1.4.1 Maintenance performance indicators 8
1.4.2 Total productive maintenance as a performance measurement system 9

1.5 Concept of flexible manufacturing system (FMS) 10

1.5.1 Maintenance characteristics of FMS 11

1.5.2 FMS types and nature of failures 12

1.6 Background of total productive maintenance (TPM) 15

1.6.1 TPM objectives 18

1.6.2 The operational pillars of TPM 20

1.6.3 Steps for implementing TPM 22

1.7 Contribution of the thesis 23

1.8 Organization of thesis 25

Chapter 2: Literature Review

2.1 Introduction 28

2.1.1 Maintenance practices, planning and control systems 29

2.1.2 Maintenance policies in flexible manufacturing systems 42

2.1.3 Implementation of TPM in manufacturing sector 46

2.1.4 Importance and effectiveness of human-related elements in TPM 52

2.1.5 Parametric investigation of TPM 57

2.2 Identification of research gaps 62

2.3 Summary of the chapter 64

Chapter 3: Preparedness and Initiatives for TPM in Flexible Manufacturing Environment: Case Study of an Automobile Plant

3.1 Introduction 65

3.2 About Hero MotoCorp Ltd 66
3.3 Proposed implementation plan for TPM……………………………… 67
 3.3.1 Announcement of TPM and top management commitment……………… 68
 3.3.2 Development of TPM promotion organization structure…………………………………… 68
 3.3.3 Team building and meeting plan…………………………………………………… 71
 3.3.4 Launch a formal education and training program for employees……………… 73
 3.3.5 Strategies and success factors for finalization of TPM policies and goals………. 76
 3.3.6 Design and development of TPM master plan……………………………………………… 77
 3.3.7 Design and development of an autonomous maintenance program for operators 82
 3.3.8 TPM kick-off…………………………………………………………………………………… 85
 3.3.9 Common obstacles needed to overcome for successfully implementing TPM… 86
3.4 Implementation strategy of 5S………………………………………………… 87
 3.4.1 Introduction of 5S………………………………………………………………………… 88
 3.4.2 Cost liabilities for 5S implementation techniques……………………………………… 90
 3.4.3 Guidelines for 5S preparation…………………………………………………………… 91
 3.4.4 Training framework for 5S…………………………………………………………… 94
 3.4.5 Step by step implementation of 5S in Hero MotoCorp Ltd…………………………… 95
 3.4.6 Problems faced during 5S implementation……………………………………………… 103
 3.4.7 Benefits achieved after 5S implementation……………………………………………… 105
3.5 Discussion on the framework of TPM activities developed……………….. 109
3.6 Summary of the chapter…………………………………………………………… 110

Chapter 4: Framework for Human-Related Issues in Implementation of TPM

 4.1 Introduction………………………………………………………………………………… 111
 4.2 Identification and selection of human-related issues…………………………… 112
4.3 Importance and effectiveness of human-related issues in implementation of TPM

4.4 Research method

4.5 Design and creation of the questionnaires

4.6 Distribution of questionnaires

4.6.1 Sample selection and size

4.6.2 Searching of the potential areas

4.6.3 The implementation stage

4.7 Results of the survey

4.8 Discussion on visualizing the subgroup differences in each of the identified human issues

4.9 Summary of the chapter

Chapter 5: Evaluation of Overall Equipment Effectiveness (OEE) in Flexible Manufacturing Environment

5.1 Introduction

5.2 Overview of overall equipment effectiveness

5.2.1 Availability

5.2.2 Performance efficiency

5.2.3 Rate of quality

5.2.4 World class OEE

5.3 Concept of six big losses

5.3.1 Equipment failure or breakdown loss

5.3.2 Setup and adjustments

5.3.3 Idling and minor stoppages

5.3.4 Reduced speed
5.3.5 Defects in process and re-work .. 141
5.3.6 Reduced yield .. 141
5.4 Selection criteria of manager model machines in a flexible manufacturing environment ... 141
5.5 Measurement of overall equipment effectiveness (OEE) 144
 5.5.1 Measurement of OEE for broaching machine I 145
 5.5.2 Measurement of OEE for CNC lathe machine 146
 5.5.3 Measurement of OEE for 4 spindle gun drilling machine 147
5.6 Discussions on OEE assessment and scope of improvement 148
5.7 Discussions on losses assessment and scope of improvement 151
5.8 Summary of the chapter .. 154

Chapter 6: Impact Analysis of TPM on (PQCDSM) Indicators

6.1 Introduction .. 156
6.2 Impact of TPM on various indicators .. 158
 6.2.1 Impact of TPM on productivity ... 158
 6.2.2 Impact of TPM on quality .. 159
 6.2.3 Impact of TPM on cost ... 161
 6.2.4 Impact of TPM on delivery ... 162
 6.2.5 Impact of TPM on safety .. 163
 6.2.6 Impact of TPM on morale/motivation .. 165
6.3 Discussions and analysis of PQCDSM indicators 167
6.4 Summary of the chapter .. 169
Chapter 7: Conclusions, Recommendations and Scope for Future Work

7.1 Introduction .. 171
7.2 Conclusions .. 173
7.3 Recommendations ... 179
7.4 Scope for future work ... 181

Bibliography .. 183

List of Research Publications ... 210

Appendix I: Evaluation Questionnaire Sample ... 212

Appendix II: TPM Internal Certificate Form ... 213

Appendix III: Abnormality Card-Autonomous Maintenance .. 214

Appendix IV: Standard Operating Procedure Sheet .. 215

Appendix V: 5S Audit Form .. 216

Appendix VI: 5S Red Tag .. 217

Appendix VII: Improvement (Kaizen) Record Sheet ... 218

Appendix VIII: Questionnaire Survey Related Human Issues during Implementation of Total Productive Maintenance .. 219

Appendix IX: 5S Selected Interview Questions .. 222

Appendix X: One Point Lesson (OPL) ... 223

Appendix XI: OPL and Team Members Training Data .. 224

Appendix XII: Plant TPM Policy ... 225
LIST OF FIGURES

Chapter 3: Preparedness and Initiatives Taken for TPM in Flexible Manufacturing Environment: Case Study of Automobile Sector

3.1 TPM promotion organization structure for Hero Motors Corp Ltd. (Haridwar)...
3.2 Manager Model Machines and pilot teams...
3.3 Framework structure of E& T pillar...
3.4 TPM Hindi slides designed for bottom line operators...
3.5 Training plan of education and training pillar...
3.6 Training sessions carried out during a period (2009-2012)...
3.7 TPM policy of Hero Motors Corp Ltd...
3.8 Design of TPM Master Plan for two wheeler automobile plant...
3.9 Autonomous maintenance training methodology...
3.10 Principles of 5S...
3.11 5S council structure...
3.12 5S organization team structure plan of PPC...
3.13 Red tag items of office...
3.14 Flow chart of 1S activity...
3.15 Sorting is done in offices...
3.16 Stationery items and box files placement during 2S...
3.17 Placement of stationary items during 2S...
3.18 Sign boarding technique in office files...
3.19 Systematic placements of items on desk during 2S...
3.20 Sign boarding technique on files and switchboard during 5S...
3.21 Systematic placements of different office forms in HR office...
3.22 3S Cleaning schedule .. 101
3.23 Flow chart of 5S implementation ... 103
3.24 Impact of 5S on communication ... 106
3.25 Impact of 5S on morale of employees .. 107
3.26 Impact of 5S on teamwork of employees 108
3.27 Impact of 5S on safety incidents ... 108

Chapter 4: Framework for Human-Related Issues in Implementation of TPM

4.1 Framework for human-related issues ... 119
4.2 Importance and effectiveness of human issues in Indian industries ... 125
4.3 Importance and effectiveness of human issues in Indian industries ... 126

Chapter 5: Evaluation of Overall Equipment Effectiveness (OEE) in Flexible Manufacturing Environment

5.1 Six equipment losses and OEE .. 136
5.2 Manufacturing facilities divided into seven section 143
5.3 Graphical representation of OEE of TPM Manager model machines ... 148
5.4 OEE trend of Broaching machine ... 149
5.5 OEE trend of CNC lathe machine ... 149
5.6 OEE trend of 4 spindle gun drilling machine 150
5.7 OEE and the six big losses ... 152
5.8 Pareto chart showing the major losses occurrence 153

Chapter 6: Impact Analysis of TPM on (PQCDSM) Indicators

6.1 Average monthly production volume trend during the period (2008-2012) ... 159
6.2 Customer complaints trend during the period of (2008-2012) 160
6.3 Cost of operations (in millions) trend during the period of (2008-2012). ... 162
6.4 Delivery adherence trend during the period of (2008-2012)…………………………..163
6.5 Accidents trend during a period of (2008-2012)...165
6.6 Trend of number of kaizens received (2008-2012)...166
6.7 Trend of Absenteeism percentages (2008-2012)...167
LIST OF TABLES

Chapter 1: Introduction

1.1 TPM performance indicators...18
1.2 Objectives of eight standard TPM pillars...21
1.3 Twelve steps for TPM development..22

Chapter 3: Preparedness and Initiatives Taken for TPM in Flexible Manufacturing Environment: Case Study of Automobile Sector

3.1 Selected organizational members for Pilot team.......................................71
3.2 Meeting program of selected Pilot team..72
3.3 Recommended books and manuals by Education & Training pillar............76
3.4 Zone areas selected for 5S implementation..93

Chapter 4: Framework for Human-Related Issues in Implementation of TPM

4.1 List of industries used for survey..121
4.2 Likert scale ranking...122
4.3 Response rate received from automobile industries..............................124
4.4 Response rate received from core automobile vendor companies...........124
4.5 Response rate received from textile industry..125

Chapter 5: Evaluation of Overall Equipment Effectiveness (OEE) in Flexible Manufacturing Environment

5.1 Percentage of World class OEE..138
5.2 Shift time distribution...144
5.3 OEE for broaching machine I before and after TPM implementation........145
5.4 OEE for CNC lathe machine before and after TPM implementation.........146
5.5 OEE for 4 Spindle gun drilling machine before and after TPM implementation...147
5.6 Representation of OEE data before and after TPM implementation..................149

Chapter 6: Impact Analysis of TPM on (PQCDSM) Indicators
6.1 Benchmark and targets of TPM performance indicators (PQCDSM).............169
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AM</td>
<td>Autonomous Maintenance</td>
</tr>
<tr>
<td>AGV</td>
<td>Automated Guided Vehicles</td>
</tr>
<tr>
<td>BPR</td>
<td>Business Process Re-engineering</td>
</tr>
<tr>
<td>BM</td>
<td>Breakdown Maintenance</td>
</tr>
<tr>
<td>CBM</td>
<td>Condition Based Maintenance</td>
</tr>
<tr>
<td>CFT</td>
<td>Cross Functional Teams</td>
</tr>
<tr>
<td>CII</td>
<td>Confederation of Indian Industries</td>
</tr>
<tr>
<td>CIM</td>
<td>Computer Integrated Manufacturing</td>
</tr>
<tr>
<td>CNC</td>
<td>Computer Numerical Control</td>
</tr>
<tr>
<td>CoPM</td>
<td>Cost of Poor Maintenance</td>
</tr>
<tr>
<td>DIPP</td>
<td>Department of Industrial Policy and Promotion</td>
</tr>
<tr>
<td>ERP</td>
<td>Enterprise Resource Planning</td>
</tr>
<tr>
<td>FDI</td>
<td>Foreign Direct Investment</td>
</tr>
<tr>
<td>FMECA</td>
<td>Failure Mode Effect and Criticality Analysis</td>
</tr>
<tr>
<td>FME</td>
<td>Flexible Manufacturing Environment</td>
</tr>
<tr>
<td>FMS</td>
<td>Flexible Manufacturing System</td>
</tr>
<tr>
<td>FI</td>
<td>Focused Improvement</td>
</tr>
<tr>
<td>GDP</td>
<td>Gross Domestic Product</td>
</tr>
<tr>
<td>GT</td>
<td>Group Technology</td>
</tr>
<tr>
<td>JIPM</td>
<td>Japanese Institute of Plant Maintenance</td>
</tr>
<tr>
<td>JIT</td>
<td>Just In Time</td>
</tr>
<tr>
<td>LTA</td>
<td>Logic Tree Analysis</td>
</tr>
<tr>
<td>MPM</td>
<td>Maintenance Performance Measurement</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>MPI</td>
<td>Maintenance Performance Indicator</td>
</tr>
<tr>
<td>MTBF</td>
<td>Mean Time Between failures</td>
</tr>
<tr>
<td>MTTR</td>
<td>Mean Time To Repair</td>
</tr>
<tr>
<td>NC</td>
<td>Numerical Control</td>
</tr>
<tr>
<td>OEE</td>
<td>Overall Equipment Effectiveness</td>
</tr>
<tr>
<td>O & M</td>
<td>Operational and Maintenance Cost</td>
</tr>
<tr>
<td>OPL</td>
<td>One Point Lesson</td>
</tr>
<tr>
<td>OTE</td>
<td>Overall Throughput Effectiveness</td>
</tr>
<tr>
<td>PQCDSM</td>
<td>Productivity, Quality, Cost, Delivery, Safety and Morale</td>
</tr>
<tr>
<td>QFD</td>
<td>Quality Function Deployment</td>
</tr>
<tr>
<td>RCA</td>
<td>Root Cause Analysis</td>
</tr>
<tr>
<td>RCM</td>
<td>Reliability Centered Maintenance</td>
</tr>
<tr>
<td>SMED</td>
<td>Single Minute Exchange Die</td>
</tr>
<tr>
<td>TEEP</td>
<td>Total Equipment Effectiveness Performance</td>
</tr>
<tr>
<td>TPS</td>
<td>Toyota Production System</td>
</tr>
<tr>
<td>TPM</td>
<td>Total Productive Maintenance</td>
</tr>
<tr>
<td>TQM</td>
<td>Total Quality Management</td>
</tr>
<tr>
<td>TPMP</td>
<td>Total Plant Maintenance Productivity</td>
</tr>
<tr>
<td>VBM</td>
<td>Vibration Based Maintenance</td>
</tr>
<tr>
<td>WCM</td>
<td>World Class Manufacturing</td>
</tr>
</tbody>
</table>
TPM TERMINOLOGY

Total Productive Maintenance: Total Productive Maintenance (TPM) is a maintenance philosophy which involves improving the maintainability and reliability of plant and equipment. The goal of the TPM is to enhance the overall efficiency, motivating the employees and creating an autonomous environment.

Jishu Hozen: It is also known as Autonomous maintenance. A mother pillar of Total productive maintenance (TPM) in which shop floor operators carry out basic maintenance activities (such as cleaning, lubrication and inspection).

Kobetsu Kaizen: It is also known as a Focused improvement. It is an important pillar of TPM that includes activities such as enhancing the overall equipment effectiveness of equipment, processes and plant through identification and elimination of losses and failures.

5S: Housekeeping technique

1S (Seiri): Sorting {To get rid of unwanted items}.

2S (Seiton): Set in order {To locate a specific place specific items of a specific quantity, where needed}.

3S (Seiso): Shine and sweep {Cleaning the workplace and visually inspect for abnormalities}.

4S (Seiketsu): Standardize {To consolidate the first 3S by establishing standard procedures}.
5S (Shitsuke): Sustain (To sustain improvements and make further improvements by encouraging effective use of the “Check-Act-Plan-Do” cycles.

Kaizen: A plan of action where employees work together effectively to achieve regular, continuous, gradual improvements and suggestions in the manufacturing process.

Muda (Waste): Anything in the manufacturing process that does not add value from the customer’s perspective.

Gemba (Real Place): A philosophy that reminds us to get out of our offices and spend time on the plant floor i.e. the place where real action occurs.

Just-In-Time (JIT): Pull parts through production based on customer demand instead of pushing parts through production based on projected demand.

Toyota Production System (TPS): It is a manufacturing philosophy and practices developed by Toyota Motor Corporation of Japan over a period of many years. The main objectives of the TPS are to design out when machines and team members are overburdened (Muri), irregularity (Mura), and to eliminate waste (Muda).

Overall Equipment Effectiveness (OEE): OEE is a performance metric compiled from three parameters of the machine (or process) being measured. The three parameters are Availability, Performance Efficiency and Rate of Quality.

Condition Based Maintenance: It is defined as an assessment of the condition of the machine which is made on the basis of which failure of the machine is predicted. Vibration monitoring, thermography, oil analysis and ferrography are monitoring techniques that directly indicate the level of wear.
Mean Time Between Failures (MTBF): Mean time between failure (MTBF) signifies the average amount of time that an equipment or device operates before failing. This unit of measurement includes the only operational time between failures and does not include repair times, assuming the item is repaired and begins functioning again.

Mean Time To Repair (MTTR): Mean time to repair (MTTR) is the average time required to fix a failed device or component and return it to operational status. It is a basic measure of maintainability of repairable items.

Maintenance Performance Indicator (MPI): It is defined as an early warning system for operation and maintenance process which indicates the level of performance, so as to able to proceed for evaluation, prediction and corrective action.

Key Performance Indicators: It is defined as a metrics designed to track the progress by achieving the critical goals, targets and well-defined objectives of the organization.

Root Cause Analysis: It is a problem-solving methodology which is used to diagnose and identify the root causes of problems or faults. It is a common approach to ask why five times in order to move a step closer to discovering the true underlying problem.

Single Minute Exchange of Die (SMED): SMED (Single-Minute Exchange of Dies) is a system for reducing dramatically the time it takes to complete equipment changeovers. Each and every element of the changeover is minutely analyzed to see if it can be eliminated, moved, simplified, or streamlined.

Six Big Losses: The production losses are categorized into six major categories:

- Breakdowns
• Setup/Adjustments
• Small Stops
• Reduced Speed
• Startup Rejects
• Production Rejects

Value Stream Mapping: Value Stream Mapping (VSM) is a pencil and paper tool that helps you to see and understand the flow of material and information as a product makes its way through the value stream.