CONTENTS

Acknowledgements 1
1. Introduction 1
2. Materials 12
 2.1. Insecta 12
 2.1.1. Bombyx mori females 12
 2.1.2. Antheraea proyli females (an interspecific hybrid between A. pernyi and A. roylei) 12
 2.1.3. Philosamia ricini females 12
 2.1.4. Actias selene females 12
 2.2. Reptilia 12
 2.2.1. Calotes versicolor males 12
 2.3. Aves 12
 2.3.1. Gallus domesticus males 12
 2.4. Mammalia 12
 2.4.1. Rattus norvegicus albus males 12
 2.4.1. Sus scrofa domestica males 12
3. Methods 12
 3.1. Preparation of meiocytes 12
 3.1.1. Preparation of meiotic cell suspension 12
 3.1.2. Spreading the cells 14
 3.1.2.1. Spreading solution 14
 3.1.2.2. Appliances used for spreading 14
 3.1.2.3. Process of spreading 14
 3.1.2.3.1. Reptile, bird and Mammals 14
 3.1.2.3.2. Silkworms 14
 3.1.3. Fixation 14
 3.1.3.1. Fixative 14
 3.1.3.2. Photoflo 15
 3.1.3.3. Process of fixation 15
 3.1.4. Staining 15
 3.1.4.1. Stain 15
 3.1.4.2. Process of staining 15
 3.2. Treatment of male albino rats with gossypol 15
3.3. Sequential analysis of synaptonemal complexes in male rats after gossypol treatment
3.4. Identification of meiotic prophase stages
3.5. Photomicrography
3.6. Measurement of relative lengths of synaptonemal complexes
3.7. Statistical analysis

4. Results
4.1. Meiotic prophase in female *Bombyx mori*
 4.1.1. Preleptotene
 4.1.2. Leptotene
 4.1.3. Zygotene
 4.1.4. Pachytene
 4.1.4.1. Synaptonemal complex and bivalent structure
 4.1.4.2. Bivalent lengths at pachytene
 4.1.5. Post pachytene
 4.1.5.1. Oocyte
 4.1.5.2. Nurse cell
4.2. Meiotic prophase in female *Philosamia ricini*
 4.2.1. Preleptotene
 4.2.2. Leptotene
 4.2.3. Zygotene
 4.2.4. Pachytene
 4.2.4.1. Synaptonemal complex and bivalent structure
 4.2.4.2. Bivalent lengths at pachytene
 4.2.5. Post pachytene
 4.2.5.1. Oocyte
 4.2.5.2. Nurse cell
4.3. Meiotic prophase in female *Antheraea proylei*, an interspecific hybrid between *A. pernyi* and *A. roylei*
 4.3.1. Preleptotene
 4.3.2. Leptotene
 4.3.3. Zygotene
 4.3.4. Pachytene
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.3.4.1</td>
<td>Synaptonemal complex and bivalent structure</td>
<td>30</td>
</tr>
<tr>
<td>4.3.5</td>
<td>Post pachytene</td>
<td>31</td>
</tr>
<tr>
<td>4.3.5.1</td>
<td>Oocyte</td>
<td>31</td>
</tr>
<tr>
<td>4.3.5.2</td>
<td>Nurse cell</td>
<td>32</td>
</tr>
<tr>
<td>4.4</td>
<td>Meiotic prophase in female Actias selene</td>
<td>33</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Leptotene</td>
<td>33</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Zygotene</td>
<td>33</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Pachytene</td>
<td>34</td>
</tr>
<tr>
<td>4.4.3.1</td>
<td>Synaptonemal complex and bivalent structure</td>
<td>34</td>
</tr>
<tr>
<td>4.4.3.2</td>
<td>Bivalent lengths at pachytene</td>
<td>34</td>
</tr>
<tr>
<td>4.4.4.1</td>
<td>Oocyte</td>
<td>34</td>
</tr>
<tr>
<td>4.4.4.2</td>
<td>Nurse cell</td>
<td>35</td>
</tr>
<tr>
<td>4.5</td>
<td>Meiotic prophase in male Calotes versicolor</td>
<td>36</td>
</tr>
<tr>
<td>4.5.1</td>
<td>Preleptotene</td>
<td>36</td>
</tr>
<tr>
<td>4.5.2</td>
<td>Leptotene</td>
<td>36</td>
</tr>
<tr>
<td>4.5.3</td>
<td>Zygotene</td>
<td>37</td>
</tr>
<tr>
<td>4.5.4</td>
<td>Pachytene</td>
<td>39</td>
</tr>
<tr>
<td>4.5.4.1</td>
<td>Synaptonemal complex and bivalent structure</td>
<td>39</td>
</tr>
<tr>
<td>4.5.4.2</td>
<td>Bivalent lengths at pachytene</td>
<td>39</td>
</tr>
<tr>
<td>4.5.5</td>
<td>The sex chromosomes</td>
<td>40</td>
</tr>
<tr>
<td>4.5.6</td>
<td>Diplotene</td>
<td>40</td>
</tr>
<tr>
<td>4.6</td>
<td>Meiotic prophase in male Gallus domesticus</td>
<td>41</td>
</tr>
<tr>
<td>4.6.1</td>
<td>Preleptotene</td>
<td>41</td>
</tr>
<tr>
<td>4.6.2</td>
<td>Leptotene</td>
<td>41</td>
</tr>
<tr>
<td>4.6.3</td>
<td>Zygotene</td>
<td>42</td>
</tr>
<tr>
<td>4.6.4</td>
<td>Pachytene</td>
<td>43</td>
</tr>
<tr>
<td>4.6.4.1</td>
<td>Synaptonemal complex and bivalent structure</td>
<td>43</td>
</tr>
<tr>
<td>4.6.4.2</td>
<td>Bivalent lengths at pachytene</td>
<td>43</td>
</tr>
<tr>
<td>4.6.5</td>
<td>Diplotene</td>
<td>44</td>
</tr>
<tr>
<td>4.7</td>
<td>Meiotic prophase in male Sus scrofa domestic</td>
<td>45</td>
</tr>
<tr>
<td>4.7.1</td>
<td>Preleptotene</td>
<td>45</td>
</tr>
<tr>
<td>4.7.2</td>
<td>Leptotene</td>
<td>45</td>
</tr>
<tr>
<td>4.7.3</td>
<td>Zygotene</td>
<td>45</td>
</tr>
<tr>
<td>4.7.4</td>
<td>Pachytene</td>
<td>47</td>
</tr>
</tbody>
</table>
4.7.4.1. Synaptonemal complex structure 47
4.7.4.2. Bivalent lengths at pachytene 47
4.7.5.3. Bivalent structure 48
4.7.5.1. The chromocenter 48
4.7.5.2. Nucleolus and nucleolar organizer regions 48
4.7.6. The sex chromosomes 49
4.7.7. Diplotene 50
4.8.1. Description of meiotic prophase stages 51
4.8.2. The sex chromosomes 53
4.8.3. Bivalent lengths at pachytene 54
4.8.4. Duration of premeiotic and meiotic prophase stages 54
5. Discussion
5.1. Surface spreading in meiotic studies 55
5.2. Premeiotic interphase 56
5.3. Significant events at leptotene to pachytene 57
5.3.1. Organization of lateral elements 58
5.3.2. Association of the nuclear membrane and the telomere 59
5.3.3. Nuclear polarity 61
5.3.4. Presynaptic alignment 64
5.3.5. Initiation of synaptonemal complex formation 64
5.3.6. Kinetics of synaptonemal complex formation 68
5.3.7. Specificity for pairing 70
5.3.8. Interlocking 72
5.4. Pachytene 73
5.4.1. Structure and composition of synaptonemal complexes 73
5.4.2. Synaptonemal complex lengths of bivalents 77
5.4.3. Bivalent structure 81
5.4.3.1. The centromere 81
5.4.3.2. Chromocenter formation and heterochromatin
behaviour

5.4.3.3. Nucleolus organizer regions

5.5. The sex chromosomes

5.6. Diplotene

5.6.1. Synaptonemal complex at diplotene of chiasmatic meiosis

5.6.2. Synaptonemal complex at diplotene of achiasmatic meiosis

5.7. Sequential analysis of meiotic prophase in male rats after gossypol treatment

5.8. Cytogenetic application

5.8.1. Synaptonemal complex in *Antheraea* species hybrid

Summary

References