Acknowledgements

First and above all, I thank and praise Allah, the almighty for providing me this opportunity and granting me the capability to proceed successfully. This thesis arose in part out of years of research that has been done since I came to Integral University. Three personality who deserves a First and Foremost mention are My Mother Mrs. Naseen Bano, My Father Mr. Mustafa Ali Khan, My supervisor Dr. Mohd.Sajid Khan, and their strong belief in my abilities and moral support uplifted my spirits.

I owe my most sincere gratitude to Dr. Mohd. Sajid Khan, Associate Professor Department of Biosciences, Integral University, my esteemed Supervisor. It has been an honor to be his Ph.D. student. I would like to record my gratitude to him for his supervision, thoughtful advice, critical remarks and constant guidance. I also gratefully acknowledge to Dr. Mohd. Salman Khan, and Dr. Saheem Ahmad, Associate Professor Department of Biosciences, Integral University, for the astute discussion, offering valuable advice, for his support during the whole period of the study.

I was extraordinarily fortunate in having Prof. (Dr.) Neelam Pathak as the Head, Department of Biosciences, for her motivation and attention which has provided good and smooth basis for my Ph.D. tenure. I fall short of words to express my sense of gratitude and indebtedness for the care, love, support and motivation that Dr. Syed Mohd. Danish Rizvi has given to me continuously during my entire tenure of research.

I wish to express my warm and sincere thanks to Prof. S.W. Akhtar, Vice-Chancellor, Integral University, Lucknow for endowing with indispensable infrastructure, resources and a workplace to accomplish my work. I gratefully acknowledge Prof. Jamal M. Arif, Pro Vice-Chancellor and Dean, R&D, Prof. S.M. Iqbal, Chief Academic Consultant; Prof. T. Usmani; Dr. I.A. Khan, Registrar; Prof. (Dr.) Aqil Ahmad, Controller of Examination and Prof. (Dr.) Abdul Rahman, Dean (Faculty of Science), Integral University for their insight and constant encouragement.

I express my deep sense of gratitude towards Dr. Aalok Dhawan Scientist IITR, Indian Institute Toxicology Research Lucknow India, for getting done the most crucial part of the research which involved characterization of the nanoparticles. I am extremely indebted to Dr. Talib Hussain, Mr. Paramdeep Singh Bagga,. A special thank to Prof. (Dr.) H. H. Siddiqui, Dean of Pharmacy, Integral university for his cooperation for completing the most crucial part of my research work conserving with the in-vivo study.
A special mention must go my colleagues Dr. Mrs. Shazia Mansoor, Ms. Sana Iram, Mr. Varish Ahmad, Mrs. Manaal Zahra, Ms. Muniba Rahim, Ms. Iram Wahid, Dr. Jai Ms. Nidhi, Dr. Danish Iqbal, Dr. Firoz Akhtar, Dr. Khursheed Ahmad and Mr. Sahir for their co-operation in completing my research work their advice and willingness to share their bright thoughts with me. Collective and individual acknowledgements are also owed to many friends, teachers and colleagues at Integral University.

Where would I be without my family? My parents, brother, sisters and my friends Dr. Mohd. Hayatul Islam, Mr. Mohd. Kamil, Mr. Imran Khan, Mr. Ejazul Haq, Mr. Latafat, Mr. Sibghatullah, deserve special mention for their inseparable support and prayers. Finally, I would like to thank everybody who was important to the successful realization of this thesis, as well as expressing my apology that I could not mention personally one by one.

Last but not the least, thanks to my supervisor, Dr. Mohd. Sajid Khan whose inspiring words and enthusiastic acts made me forget all the pain while achieving this feat.

SALMAN KHAN
Table of Contents

Particulars Page No.
List of Tables and Graphs xiv-xv
List of Figures xvi-xxiv
Abbreviations xxv-xxvii
Abstract xxviii-xxxiii

Chapter 1 Introduction and Review of Literature 1-43
 1.1 Introduction 1-6
 1.2 Review Literature 6-43
 1.2.1 Nanotechnology 6-7
 1.2.2 Properties of Nanomaterials 7
 1.2.2.1 Size and shape dependant catalytic properties 7-8
 1.2.2.2 High surface-to-volume ratio (S/V) 8-9
 1.2.2.3 Magnetic properties 9
 1.2.2.4 Mechanical properties 9
 1.2.2.5 Optical property 10
 1.2.2.6 Biocompatibility 10-11
 1.2.3 Synthesis of Nanomaterials 11-12
 1.2.3.1 Physical methods 12-13
 1.2.3.2 Chemical methods 13-14
 1.2.3.2.1 Synthesis in micellar solutions 14-15
 1.2.3.2.2 Direct synthesis in presence and absence of additives 15
 1.2.3.3 Biological methods 16
 1.2.3.3.1 Use of microorganisms for nanomaterial 16-18
Synthesis

1.2.3.3.2 Use of plant extracts for nanomaterial synthesis

1.2.3.3 Synthesis Utilizing Virus, Yeast and Algae

1.2.3.4 Biomimetic synthesis

1.2.3.4.1 Carbohydrates/Oligosaccharides as reducing/capping agent for Glyconanoparticles

1.2.3.4.2 Role of enzymes in synthesis

1.2.4 Characterization of synthesized nanomaterials

1.2.4.1 Scanning Electron Microscopy (SEM)

1.2.4.2 Transmission Electron Microscopy (TEM)

1.2.4.3 Selected area diffraction (SAED)

1.2.4.4 UV-VIS Spectroscopy

1.2.4.5 Fourier Transform Infrared Spectroscopy (FTIR)

1.2.4.6 Dynamic Light Scattering (DLS)

1.2.4.7 High Performance Liquid Chromatography (HPLC)

1.2.5 Surface functionalization of nanoparticles

1.2.5.1 Science of surface functionalization

1.2.5.2 Different types of surface functionalization

1.2.5.3 Use of capping agents

1.2.5.3.1 Human serum albumin (HSA) as a capping agent
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.2.6</td>
<td>General mechanism of bioconjugation of functionalized nanoparticles</td>
<td>32-34</td>
</tr>
<tr>
<td>1.2.7</td>
<td>Drug delivery of the functionalized nanoparticles</td>
<td>34-35</td>
</tr>
<tr>
<td>1.2.7.1</td>
<td>Nature of drug/ additives</td>
<td>35-36</td>
</tr>
<tr>
<td>1.2.7.2</td>
<td>Physiological Strategies of drug targeting</td>
<td>36</td>
</tr>
<tr>
<td>1.2.7.2.1</td>
<td>Passive Targeting</td>
<td>36-37</td>
</tr>
<tr>
<td>1.2.7.2.2</td>
<td>Active Targeting</td>
<td>37</td>
</tr>
<tr>
<td>1.2.8</td>
<td>Key studies on toxicological effects of Nanoparticles (NPs)</td>
<td>37-38</td>
</tr>
<tr>
<td>1.2.9</td>
<td>Uptake, possible transport and biodistribution of nanoparticles in living organisms</td>
<td>38-41</td>
</tr>
<tr>
<td>1.2.10</td>
<td>Applications of nanotechnology in biological sciences</td>
<td>41-42</td>
</tr>
<tr>
<td>1.2.11</td>
<td>Beneficial Aspects of Nanoparticles</td>
<td>42</td>
</tr>
<tr>
<td>1.2.12</td>
<td>Hypothesis and Objectives of the Work</td>
<td>42-43</td>
</tr>
</tbody>
</table>

Chapter 2
Biosynthesis and characterization of inorganic nanoparticle by using air isolated bacteria and fungi and their molecular characterization
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>44-45</td>
</tr>
<tr>
<td>2.2</td>
<td>Materials and Methods</td>
<td>46</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Materials</td>
<td>46</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Isolation of microorganism</td>
<td>47-47</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Molecular Identifications</td>
<td>47-48</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Microorganism and growth</td>
<td>48</td>
</tr>
</tbody>
</table>
2.2.5 Extracellular synthesis of Silver and neodymium Nanoparticles 48-49
2.2.6 Characterization of Silver and Neodymium Nanoparticles 49
2.2.6.1 UV/Vis spectroscopy 49
2.2.6.2 Transmission Electron Microscopy (TEM) 49
2.2.6.3 Scanning Electron Microscopy (SEM) 50
2.2.6.4 Dynamic Light Scattering (DLS) 50
2.3 Results 50
2.3.1 Isolation, Molecular characterization and phylogenetic analysis of bacterial and fungal strains 50-52
2.3.2 Synthesis and characterization of silver and neodymium nanoparticles 52-71
2.3.3 Discussion 72-74
2.4 Conclusion 74-75

Chapter 3 Enzymatic Synthesis and Surface Functionalization of Gold Nanoparticle and Their Bioconjugation with several Drug
3.1 Introduction 76-78
3.2 Materials and Methods 78-79
3.2.1 In Vitro Synthesis of Gold nanoparticles 79 by using nitrate reductase enzyme
3.2.2 In vitro synthesis of gold nanoparticles by using bromelain at varying concentration 79-81
and temperature

3.2.3 In Vitro synthesis of gold nanoparticles 81-82 by using trypsin

3.2.4 Bioconjugation of nitrate reductase 82-83 synthesized gold nanoparticles

3.2.5 Determination of Loading efficiency (LE) 83-84 of secnidazole drug on Au-HSA nanoparticles by a high performance liquid chromatography

3.2.6 Characterization of in vitro synthesized 84 gold nanoparticles by various techniques

3.2.6.1 UV/Vis spectroscopy 84

3.2.6.2 Circular Dichroism measurements (CD) 84

3.2.6.3 Transmission Electron Microscopy 84 (TEM)

3.2.6.4 Scanning Electron Microscopy (SEM) 85

3.2.6.5 Dynamic Light Scattering (DLS) 85

3.2.6.6 High Performance Liquid 85 Chromatography (HPLC)

3.3 Results and discussion 86-107

3.4 Conclusion 107

Chapter 4 Antibacterial and Cytotoxic Effect of 108-138 Bioconjugated and Biosynthesized Nanoparticles in Normal and Cancer Lines In-vitro

4.1 Introduction 108-111
4.2 Materials and methods 111-112
4.2.1 Antibacterial Activity 112-113
4.2.1.1 Determination of minimum inhibitory concentration 113-114
4.3.3 Cell culture 114
4.3.4 Assessment of cytotoxicity 114-115
4.3.5 Measurement of cytomorphological changes in A549 cell line 115-116
4.3.6 Analysis of changes in nuclear morphology 116-117
4.3.7 Detection of Reactive Oxygen Species 117
4.4 Results and discussion 118
4.4.1 Antibacterial Activity 118-123
4.4.2 Cytotoxic activity of Bacterial and fungus synthesized AgNps and NdNPs and bromelain encapsulated gold nanoparticles 124-137
4.5 Conclusion 137-138

Chapter 5 In-vivo Study of Enzymatically Synthesized GNPs and Modelling
Human Lung Cancer in Swiss Albino Mice

5.1 Introduction 139-142
5.2 Materials and Methods 143
5.2.1 Materials 143-144
5.2.2 Animals 144
5.2.3 Experimental design and induction of 144-145
lungs carcinoma

5.2.4 Comet Assay 145-146
5.2.5 Histopathology 146
5.2.6 Molecular Docking Study 146-147
5.2.7 LD50 of Bromelain encapsulated gold nanoparticles 147-148
5.2.8 Statistical analysis 148
5.3 Results and Discussion 148-156
5.4 Conclusion 156-157

Chapter 6 Summary and Conclusion 158-169
Scope and importance 167-168
Future prospective 168-169
Significance of work 169

Bibliography 170-217
List of Publications 218-219
List of Tables and Graphs

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Description</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.1</td>
<td>Specific experimental conditions for the synthesis of GNPs of different sizes using 0.33mg/ml concentration of bromelain at different temperature.</td>
<td>80</td>
</tr>
<tr>
<td>3.2</td>
<td>Provides specific experimental conditions for the synthesis of GNPs of different sizes using different concentrations of bromelain</td>
<td>81</td>
</tr>
<tr>
<td>3.3</td>
<td>Provides specific experimental conditions for the synthesis of GNPs of different sizes using different concentrations of Trypsin.</td>
<td>82</td>
</tr>
<tr>
<td>3.4</td>
<td>Comparative DLS, SEM and TEM analysis of GNPs synthesized by using 0.33mg/ml concentration of Bromelain incubated at different temperatures.</td>
<td>92</td>
</tr>
<tr>
<td>3.5</td>
<td>Comparative DLS, SEM and TEM analysis of GNPs synthesized by using different concentration of bromelain incubated at 40°C.</td>
<td>92</td>
</tr>
<tr>
<td>4.1</td>
<td>Inhibitory concentration values of bacterial, fungus and enzymatic synthesized AgNPs, NdNPs and GNPs-HSA-Snd.</td>
<td>119</td>
</tr>
<tr>
<td>5.1</td>
<td>Body weight, lungs weight and tumor incidence in experimental groups of Swiss albino mice initiated with N-nitrosodiethylamine (NDEA) and promoted with phenobarbitone (PB).</td>
<td>150</td>
</tr>
</tbody>
</table>
5.2 Amino Acid Residues Involved in 'NDEA and DUSP-1' Interactions. 153

5.3 Graphical method of Miller and Tainter (Turner et al., 1965) for bromelain encapsulated gold nanoparticles. 155

Graph

<table>
<thead>
<tr>
<th>No.</th>
<th>Page No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>120</td>
<td>Antibacterial activity of Myroides odoratimimus mediated synthesized AgNPs against different bacteria.</td>
</tr>
<tr>
<td>4.2</td>
<td>120</td>
<td>Antibacterial activity of Acinetobacter lwofii mediated synthesized against different bacteria.</td>
</tr>
<tr>
<td>4.3</td>
<td>121</td>
<td>Antibacterial activity of Bacillus aerophilus mediated synthesized NdNPs against different bacteria.</td>
</tr>
<tr>
<td>4.4</td>
<td>121</td>
<td>Antibacterial activity of fungus Aspergillus sp. mediated synthesized AgNPs against different bacteria.</td>
</tr>
<tr>
<td>4.5</td>
<td>122</td>
<td>Antibacterial activity of Aspergillus fumigattus mediated synthesized NdNPs against different bacteria.</td>
</tr>
<tr>
<td>4.6</td>
<td>122</td>
<td>Antibacterial activity of GNP-HSA-Snd in comparison to pure Secnidazole against (A) Bacillus cereus (B) Klebsiella pneumonia.</td>
</tr>
<tr>
<td>5.1</td>
<td>156</td>
<td>The probit values are plotted against log-doses and then the dose corresponding to probit 5, i.e., 50%, was found to be Log LD₅₀=1.41 and LD₅₀= 25.7 mg/kg body weight.</td>
</tr>
</tbody>
</table>
List of Figures

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Page No.</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>7</td>
<td>Biological molecules and structures on the nano scale</td>
</tr>
<tr>
<td>1.2</td>
<td>12</td>
<td>Examples that depict the fabrication (complexity) of materials at different length scales by ‘Top-down’ and ‘Bottom-up’ approaches. Structure of Artemisinin</td>
</tr>
<tr>
<td>Scheme 1</td>
<td>12</td>
<td>Schematic one outline of the various approaches for the synthesis of nanoparticles</td>
</tr>
<tr>
<td>1.3</td>
<td>20</td>
<td>Probable mechanism for the formation of nanoparticles by the microorganism, illustrated using silver (Ag) nanoparticle formation by Fusarium oxysporum as an example (reproduced with the permission—Anil S. K. and M. I. Khan, (2010) J. Nanoscience and Nanotechnology Vol. 10, 4124–4134, 2010).</td>
</tr>
<tr>
<td>1.4</td>
<td>36</td>
<td>Mechanism of nanoparticle drug delivery via two main mechanisms—passive and active targeting.</td>
</tr>
<tr>
<td>Scheme 2</td>
<td>40</td>
<td>Representations of possible cellular uptake pathways for particles of different sizes. (Krug, H. F., et al (2006).)</td>
</tr>
<tr>
<td>2.1</td>
<td>54</td>
<td>16s rRNA PCR amplicon loaded on 1.0% agarose gel with Amnion’s 500bp Ladder (AMLD002) (b) The above Aligned Sequence (1429 bp) is showing maximum similarity with Myroides odoratimimus.</td>
</tr>
<tr>
<td>2.2</td>
<td>55</td>
<td>16s rRNA PCR amplicon loaded on 1.0% agarose gel with Amnion’s 500bp Ladder (AMLD002) (b) The above Aligned Sequence (1332 bp) is showing maximum similarity with Acinetobacter lwoffii.</td>
</tr>
</tbody>
</table>
2.3 16s rRNA PCR amplicon loaded on 1.0% agarose gel with Amnion’s 500bp Ladder (AMLD002) (b) The above Aligned Sequence (1469 bp) is showing maximum similarity with Bacillus sp.

2.4 18S rRNA PCR amplicon loaded on 1.0% agarose gel with Amnion’s 500bp Ladder (AMLD002) (b) The above Aligned Sequence (1718bp) is showing maximum similarity with Aspergillus sp.

2.5 18S rRNA PCR amplicon loaded on 1.0% agarose gel with Amnion’s 500bp Ladder (AMLD002) (b) The above Aligned Sequence (1719 bp) is showing maximum similarity with Aspergillus fumigatus.

2.6 Phylogenetic tree of the 16S rRNA sequence of strain Myroides odoratimimus and related strains.

2.7 Phylogenetic tree of the 16S rRNA sequence of strain Acinetobacter lwoffii and related strains.

2.8 Phylogenetic tree of the 16S rRNA sequence of strain Bacillus sp. and related strains.

2.9 Phylogenetic tree of the 18S rRNA sequence of strain Aspergillus sp. and related strains.

2.10 Phylogenetic tree of the 18S rRNA sequence of strain Aspergillus fumigates and related strains.

2.11 Curves correspond to UV-Vis spectra of the AgNPs phase after 0, 24, 48, 72, 96 and 120 hrs of exposure to the (Acinetobacter lwoffii) biomass (b) Curve showing zeta potential (-12.6mv.) of as synthesized AgNPs.
2.12 Curves correspond to UV-Vis spectra of AgNPs phase after 0, 24, 48, 72 and 96 hrs of exposure to the (*Myroides odoratimimus*) biomass (b) Curve showing zeta potential (-10.2 mv.) of as synthesized AgNPs.

2.13 Curves correspond to UV-Vis spectra of NdNPs phase after 0, 24, 48, 72, 96 and 120 h of exposure to the (*Bacillus aerophilus*) biomass (b) Curve showing zeta potential (-13.6 mv.) of as synthesized NdNPs.

2.14 Curves correspond to UV-Vis spectra of NdNPs phase after 0, 24, 48, 72, 96 h and 120 hrs of exposure to the (*Aspergillus fumigatus*) biomass (b) Curve showing zeta potential (-9 mv.) of as synthesized NdNPs.

2.15 Curves correspond to UV-Vis spectra of AgNPs phase after 0, 24, 48, 72 and 96 hrs of exposure to the (*Aspergillus sp.*) biomass (b) Curve showing zeta potential (-10.44 mv.) of as synthesized AgNPs.

2.16 Curve showing DLS (Size- 65.48nm) of AgNPs synthesized by using *Myroides odoratimimus*.

2.17 Curve showing DLS (Size- 70.4nm) of AgNPs synthesized by using *Acinetobacter lwofii*.

2.18 Curve showing DLS (Size- 85.35nm) of NdNPs synthesized by using *Bacillus sp.*

2.19 Curve showing DLS (Size- 76.89 nm) of NdNPs synthesized by using *Aspergillus fumigates*.

2.20 Curve showing DLS (size- 60.10nm) of AgNPs synthesized by using *Aspergillus sp.*
2.21 Micrographs observed under (a) SEM and (b) TEM of AgNPs synthesized by using *Myroides odoratimimus*.

2.22 Micrographs observed under (a) SEM and (b) TEM of AgNPs synthesized by using *Acinetobacter lwoffii*.

2.23 Micrographs observed under (a) SEM and (b) TEM of AgNPs synthesized by using *Aspergillus sp*.

2.24 Micrographs observed under (a) SEM and (b) TEM of NdNPs synthesized by using *Bacillus sp*.

2.25 Micrographs observed under (a) SEM and (b) TEM of NdNPs synthesized by using *Aspergillus fumigatus*.

3.1 Schematic representation of the process of GNPs formation in which concentration (A) as well as temperature (B) mediated growth into larger sized GNPs.

3.2 (a) UV-visible spectra (b) SEM micrograph (c) DLS results (Z-average mean diameter) (d) TEM micrographs (Zeta Potential in Inset) of GNPs synthesized by using 0.33 mg/ml concentration of Bromelain at 40°C.

3.3 TEM micrographs of GNPs synthesized using different concentration of Bromelain at 40°C temperature (Zeta Potential in Inset); 3.3a: GNPs synthesized using 0.66 mg/ml Bromelain; 3.3b: GNPs synthesized using 1.66mg/ml Bromelain; 3.3c: GNPs synthesized using 3.33mg/ml Bromelain.

3.4 SEM micrographs of GNPs synthesized using same concentration of Bromelain (0.33mg/ml) at different temperature (Zeta Potential in Inset); 3.4a: GNPs synthesized at 50°C; 3.4b: GNPs synthesized at 60°C; 3.4c: GNPs synthesized at 70°C.
3.5 Schematic representation of biosynthesis of HSA capped GNPs-HSA by using trypsin as reducing agent.

3.6 UV-Vis spectra of GNPs-HSA synthesized by using increasing concentrations of trypsin (0.33, 0.66 and 1.66 mg/ml).

3.7 (a) TEM (b) SEM (c) DLS of GNPs-HSA synthesized by using 0.33 mg/ml concentration of trypsin.

3.8 (a) TEM (b) SEM (c) DLS of GNPs-HSA synthesized by using 0.66 mg/ml concentration of trypsin.

3.9 (a) TEM (b) SEM (c) DLS of GNPs-HSA synthesized by using 1.66 mg/ml concentration of trypsin.

3.10 Far UV-CD spectra of Bromelain (—); Bromelain-gold nanoparticle (----); and gold particle (……).

3.11 Far UV-CD spectra of Trypsin pure (—); Trypsin-gold nanoparticle (……).

3.12 Schematic representation of biosynthesis of HSA capped GNPs (GNPs-HSA) by using Nitrate Reductase as reducing agent and eventually their biobioconjugation with secnidazole drug (GNPs-HSA-Snd).

3.13 UV-Vis spectra of HSA encapsulated GNPs (GNPs-HSA), Secnidazole bioconjugated GNPs (GNPs-HSA-Snd) and pure secnidazole.

3.14 (A) TEM (B) SEM (C) Zeta Potential and (D) DLS of Pure Gnp (Gnp-HSA).
3.15 (A) TEM (B) DLS (C) Zeta Potential of Secnidazole conjugated Gnp (Gnp-HSA-Snd).

3.16 Calibration curve of conjugated secnidazole drug.

3.17 RP-HPLC chromatograms for (A) pure secnidazole drug and (B) bioconjugated drug (Au-HSA-Snd).

4.7 Effect of *Myroides odoratimimus* mediated synthesized AgNPs on A549 cancer cell line after 48 hrs at different concentrations.

4.8 Cytotoxic effect of *Myroides odoratimimus* mediated synthesized AgNPs on A549 (a) Control (b) A549 cells treated with 500µM/ml AgNPs (c) A549 cells treated with 225 µM/ml AgNPs.

4.9 Effect of *Acinetobacter lwoffii* mediated synthesized AgNPs on HeLa cancer cell line after 48 hrs treatment at different concentrations of AgNPs.

4.10 Cytotoxic effect of *Acinetobacter lwoffii* mediated synthesized AgNPs on HeLa (a) Control (b) HeLa cells treated with 500µM/ml AgNPs (c) HeLa cells treated with 225 µM/ml AgNPs.

4.11 Effect of *Bacillus sp.* mediated synthesized NdNPs on A549 cancer cell line after 48 hrs treatment at different concentrations of NdNPs.

4.12 Cytotoxic effect of *Bacillus sp.* Mediated synthesized NdNPs on A549 cell line (a) Control (b) HeLa cells treated with 500µM/ml NdNPs (c) HeLa cells treated with 225 µM/ml NdNPs.
4.13 Effect of *Aspergillus sp.* Mediated synthesized AgNPs on A549 cancer cell line after 48 hrs treatment at different concentrations.

4.14 Cytotoxic effect of *Aspergillus sp.*, mediated synthesized AgNPs on A549 (a) Control (b) A549 cells treated with 500µM/ml AgNPs (c) A549 cells treated with 225µM/ml AgNPs.

4.15 Effect of *Aspergillus fumigatus* mediated synthesized NdNPs on HeLa cancer cell line after 48hrs treatment at different concentrations of NdNPs.

4.16 Cytotoxic effect of *Aspergillus fumigatus* synthesized NdNPs on HeLa (a) Control (b) HeLa cells treated with 500µM/ml NdNPs (c) HeLa cells treated with 225µM/ml NdNPs.

4.17 Effect of (a) pure bromelain and (b) brom-GNPs on 3T3-L1 cell line after 48 hrs treatment at different concentrations.

4.18 Effect of (a) pure bromelain and (b) brom-GNPs on 3T3-L1 cell line after 24 hrs of treatment (a) 3T3-L1 Control (b) 3T3-L1 treated with brom-GNPs (1mg/ml) (c) 3T3-L1 treated with pure Bromelain (1mg/ml).

4.19 Effect of (a) pure bromelain (b) brom-GNPs on MCF-7 cell line after 48 hrs treatment at different concentrations.

4.20 Effect of pure bromelain and brom-GNPs on MCF-7 cell line after 24 hrs treatment (a) MCF-7 Control (b) MCF-7 treated with brom-GNPs (1mg/ml) (c) MCF-7 treated with pure bromelain (1mg/ml).

4.21 (a) Effect of pure bromelain (b) brom-GNPs on MDA-MB 231 cell line after 48 hrs treatment at different concentrations.
concentrations.

4.22 Effect of pure bromelain and brom-GNPs on MDA- MB 231 cell line after 24 hrs of treatment (a) MDA-MB 231 control (b) MDA-MB 231 treated with brom-GNPs (1mg/ml) (c) MDA-MB 231 treated with pure bromelain (1mg/ml).

4.23 Cytotoxic effect of Aspergillus sp., mediated synthesized AgNPs on A549 cell stained with DCFDAI (a) A549 control (b) A549 cells treated with 500µM/ml AgNPs (c) A549 cells treated with 225µM/ml AgNPs (d) A549 cells treated with 112.5 µM/ml AgNPs.

4.24 Cytotoxic effect of Aspergillus sp., mediated synthesized AgNPs on A549 cells stained with DAPI (a) A549 cells control (b) A549 cells treated with 500µM/ml AgNPs (c) A549 cells treated with 225µM/ml Ag NPs.

5.1 Mice lungs of control (A), NDEA-100 ppm (B) and NDEA-150 ppm (C) with remarkable increase in size. A number of white mosaic patches are present throughout the lung surface (arrows). DNA damaging/ Genotoxic effect of NDEA and PB on lung during carcinogenesis of control (D), NDEA-100 ppm (E) and NDEA-150 ppm (F) groups of animals. Animals were provided with NDEA along with PB for 11 weeks.

5.2 Histological study of lung tissue in control and experimental groups of mice. (A) (20x) Hematoxylin and eosin stained section of lung from control animals revealed normal architecture and bronchiole is seen in the center, (B) (20x) Hematoxylin and eosin stained section of lung from NDEA (100 ppm) and PB induced carcinoma bearing animal showing neoplastic cells with
reactive atypia displaying nuclear enlargement, conspicuous nucleoli and neutrophils within the lumina and (C) (20x) Hematoxylin and eosin stained section of lung from NDEA (150 ppm) and PB induced carcinoma bearing animal showing loss of architecture with neoplastic cells. The bronchiole is surrounded by lymphomononuclear cell infiltrate showing reactive atypia of bronchiolar epithelium.

5.3

(A) DUSP-1 or MKP-1 structure modeled using SWISS MODEL WORKSPACE showing catalytic center at the middle, (B) Catalytic center of Isomeric enzyme DUSP-1 showing interaction with several molecules of NDEA. The ligand “NDEA” is shown in ‘stick’ representation and (C) Orientation of one NDEA molecule showing the best binding to Catalytic center of DUSP-1. The ligand “NDEA” is shown in ‘stick’ representation.
Abbreviations

NPs Nanoparticles
α-NADPH Nicotinamide Adenine Dinucleotide Phosphate
AgNPs Silver Nanoparticles
GNPs Gold Nanoparticles
GNPs-HSA Gold Nanoparticles Encapsulated With Human Serum Albumin
GNPs-HSA-Snd Gold Nanoparticles Encapsulated With Human Serum Albumin And Conjugated With Secnidazole
Snd Secnidazole
Brom-GNPs Bromelain Encapsulated Gold Nanoparticles
BSA Bovine Serum Albumin
HSA Human Serum Albumin
AgNO₃ Silver Nitrate
Nd(NO₃)₂ Neodymium Nitrate
AuCl₄⁻ Auric Chloride
EDC 1-ethyl-3-(3-imethylaminopropyl)-carbodiimide
EDTA Ethylene Diamine Tetra Acetic Acid
FTIR Fourier Transform Infrared Raman Spectroscopy
HEPES ethanesulfonic acid
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>KDa</td>
<td>Kilo Dalton</td>
</tr>
<tr>
<td>Km</td>
<td>Michaelis-Menten Constant</td>
</tr>
<tr>
<td>MES</td>
<td>2 (N-Morpholino) ethanesulfonic Acid</td>
</tr>
<tr>
<td>NIR</td>
<td>Near-Infrared Region</td>
</tr>
<tr>
<td>QDs</td>
<td>Quantum Dots</td>
</tr>
<tr>
<td>SAED</td>
<td>Single Area Electron Diffraction</td>
</tr>
<tr>
<td>SDS</td>
<td>Sodium Dodecyl Sulfate</td>
</tr>
<tr>
<td>SEM</td>
<td>Scanning Electron Microscopy</td>
</tr>
<tr>
<td>SMAD</td>
<td>Spray Pyrolysis and Solvated Metal Atom Dispersion</td>
</tr>
<tr>
<td>TEM</td>
<td>Transmission Electron Microscope</td>
</tr>
<tr>
<td>UV/Vis</td>
<td>Ultraviolet/Visible Spectroscopy</td>
</tr>
<tr>
<td>Vmax</td>
<td>Maximum Velocity</td>
</tr>
<tr>
<td>XPS</td>
<td>X-Ray Photoelectron Spectroscopy</td>
</tr>
<tr>
<td>XRD</td>
<td>X-Ray Diffraction</td>
</tr>
<tr>
<td>SPR</td>
<td>Surface Plasmon Resonance</td>
</tr>
<tr>
<td>°C</td>
<td>Degree centigrade</td>
</tr>
<tr>
<td>nm</td>
<td>Nano meter</td>
</tr>
<tr>
<td>mV</td>
<td>Mili volt</td>
</tr>
<tr>
<td>DLS</td>
<td>Dynamic Light Scattering</td>
</tr>
<tr>
<td>RP-HPLC</td>
<td>Reverse Phase- High Performance Chromatography</td>
</tr>
<tr>
<td>ROS</td>
<td>Reactive Oxygen Species</td>
</tr>
</tbody>
</table>
| MTT | 3-(4,5-dimethylthiazol-2-yl)-2,5- }
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>diphenyl-tetrazolium bromide</td>
<td>Inhibitory Concentration fifty Percent</td>
</tr>
<tr>
<td>DAPI</td>
<td>4', 6-diamidino-2-phenylindole</td>
</tr>
<tr>
<td>NDEA</td>
<td>N-nitrosodiethylamine</td>
</tr>
<tr>
<td>Ppm</td>
<td>Part per Million</td>
</tr>
<tr>
<td>PB</td>
<td>Phenobarbitone</td>
</tr>
<tr>
<td>DUSP-1</td>
<td>Dual Specificity Phosphatase-1</td>
</tr>
<tr>
<td>kcal/mol</td>
<td>Kilo calorie per moles</td>
</tr>
<tr>
<td>LD<sub>50</sub></td>
<td>Lethal Dose fifty percent</td>
</tr>
</tbody>
</table>
Abstract

The major objective of the present thesis was to synthesize different inorganic (Au, Ag, Nd etc.) nanoparticles (NPs) using biological systems and investigate their biomedical applications especially against cancer and infectious diseases. Therefore, following aspects have been covered in this thesis: 1) Isolation of bacteria/fungi from the campus of integral university responsible for the synthesis of inorganic nanoparticles. 2) Molecular identification and characterization of isolated bacteria/fungi by using 16s rRNA/rDNA or 18s rRNA/rDNA. 3) Synthesis and characterization of biosynthetic nanoparticles by UV-VIS spectroscopy, XRD, EDAX, SEM, TEM and Flurometry. 4) Enzymatic synthesis of gold and silver nanoparticles and their bio conjugation with several drugs. 5) Cytotoxic effect of above mentioned bioconjugated nanoparticles in normal and cancer cell lines (in vitro) to check the bioavailability and change in the potency of the drug. 6) Cytotoxicity and kinetics of above mentioned naked nanoparticles and bioconjugated nanoparticles in SD rats.

Chapter 1 is a brief introduction to the research work presented in this thesis. It begins with a bird’s eye view of the field of nanoscience and nanotechnology and their significance to different fields of science, covering from its history to the latest development. This chapter proceeds to describe different physical, chemical and biological routes of nanoparticles synthesis. Further different characterization, drug conjugation and functionalization techniques were discussed. It also gives an account of different properties and applications of nanoparticles with particular emphasis to biological applications.

Chapter 2 deals with the synthesis of silver and neodymium nanoparticles by using fungi and bacteria, which were isolated from the campus of integral university, Lucknow on the basis of their ability to withstand high concentrations of respective salts in the growth media. Further, this quality of bacteria/fungi was exploited to reduce metal salts into respective nanoparticles. The molecular identification of bacteria and fungi was done by using 16S and 18S rRNA/rDNA techniques, respectively. Their partial 16S and 18S rRNA/rDNA gene sequences got their accession numbers KC967214, KC967215 and KC967216 for Myroides odoratimimus, Acinetobacter lwoffii, Bacillus sp. respectively and KF913250 and KF913249 for Aspergillus sp. and Aspergillus fumigates respectively, from NCBI,
GenBank. All the isolated and identified bacterial strains (*Myroides odoratimimus, Acinetobacter lwoffii, Bacillus sp.*) and fungal strains (*Aspergillus sp, Aspergillus fumigates*) were used for the synthesis of silver and neodymium nanoparticles. The formation of the AgNPs and NdNPs was monitored by UV-Vis spectroscopy using Shimadzu (Model No-UV 1800) double beam UV-Vis spectrophotometer. The surface plasmon resonance of AgNPs and NdNPs exhibited an emission band at 416-418nm and 285-287nm, respectively. Furthermore TEM, SEM and DLS characterization of both types of NPs showed them to be spherical and monodispersed with sizes ranging from 9-15 nm. The stability of both the types of nanoparticles were confirmed by zeta potential. The AgNPs and NdNPs synthesized by using biological method in the present study correlates well with the one synthesized by physical and chemical methods.

Chapter 3 deals with the enzyme mediated synthesis of gold nanoparticles (GNPs) using enzymes *viz.* trypsin, bromelain and nitrate reductase. *In vitro* synthesis of GNPs was due to reduction of AuCl₄⁻ ions to GNPs by these enzymes. Eventually, formation of GNPs was confirmed by UV-Vis spectroscopy, DLS, SEM and TEM. It is well known that Surface Plasmon Resonance (SPR) of GNPs exhibit ruby red color and an emission band at 520-533nm which was observed for as synthesized GNPs. The sizes of these nanoparticles were found to be in the range of 7-24nm, which were further authenticated by the DLS, SEM and TEM.

Further, a novel method was developed for the synthesis of GNPs of different sizes using bromelain as a reducing as well as a capping agent, at varying concentrations of bromelain and at different temperatures of reactions. The best GNPs among the produced one were found to be synthesized at 40°C temperature by using 0.33mg/ml concentration of bromelain. Moreover, the formation of GNPs was identified by their characteristic ruby red color and respective SPR. GNPs produced at 0.33 mg/ml concentration of bromelain showed characteristic ruby red color with fundamental surface plasmon resonance at 522nm, whereas the hydrodynamic diameter by DLS for same nanoparticles was estimated to be 58.65 nm. The topographical studies were performed under SEM and TEM by using GATAN digital micrograph software. The particles were found to be monodispersed and spherical in shape with a size range of 8.59-12.92 nm. The stability of nanoemulsion was estimated by zeta potential which was found to be -16.6mV. However, size of GNPs
at 0.66 mg/ml, 1.66 mg/ml and 3.33 mg/ml concentration of bromelain were found to be in a range of 11.27-24.68 nm, 22.26-32.26 and 30.42-42.14 nm, respectively by TEM. Zeta potential of GNPs synthesized by 0.66 mg/ml, 1.66 mg/ml and 3.33 mg/ml concentration of bromelain were found to be -9.83 mV, -9.67 mV and -6.47 mV, respectively.

Further, GNPs were also synthesized at different temperature by keeping concentration of bromelain (0.33 mg/ml) constant because at this concentration of bromelain, best sized nanoparticles were produced. The so produced nanoparticles were found to be monodispersed and spherical in shape when analysed under SEM. The sizes of nanoparticles synthesized at 50 °C, 60 °C and 70 °C temperature were found in the range of 22.6-31.1 nm, 36.2-39.5 nm and 50.8-62.1 nm, respectively under SEM. The stability of these nanoparticles were analyzed by measuring zeta potential and it was found to be −9.56 mV, -6.83 mV and -6.12 mV, at 50 °C, 60 °C and 70 °C temperature, respectively.

Furthermore, Human Serum Albumin encapsulated gold nanoparticles (GNPs-HSA) were synthesized by using different concentrations (viz- 0.33 mg/ml, 0.66 mg/ml and 1.66 mg/ml) of trypsin and their synthesis was confirmed by their characteristic SPR absorption bands which were appeared at 522 nm, 527 nm and 539 nm, respectively. The pronounced red shifting of the plasmon has been associated with increased nanoparticle size. Thus, there might be a dose dependent increase in size which was confirmed by TEM analysis. Here, TEM analysis for GNPs synthesized at 0.33 mg/ml, 0.66 mg/ml and 1.66 mg/ml concentration of trypsin, revealed particle size in the range of 8±2 nm, 10±3 nm and 17±3.5 nm respectively. However, the hydrodynamic diameter by DLS was found to be 40±2 nm, 75.65±4 nm and 110±5 nm for 0.33 mg/ml, 0.66 mg/ml and 1.66 mg/ml concentration of bromelain, respectively. Further, SEM micrograph image of all the samples indicated that particles were spherical in shape and monodisperse.

Furthermore, the conjugation of GNPs was done with an anti-bacterial drug secnidazole. This time GNPs were synthesized by nitrate reductase (as a reducing agent) and Human Serum Albumin (HSA) (as a capping protein). Again, synthesis of GNPs-HSA was authenticated by UV-Vis spectroscopy, DLS, SEM and TEM. Also the binding of secnidazole with GNPs-HSA was confirmed and authenticated by SPR absorption band (UV-Vis spectroscopy) which appeared at 525 nm, with a significant
broadening and a slight decrease in intensity compared to the Plasmon band for GNPs-HSA at 527 nm. The absorption spectrum of Human Serum Albumin encapsulated gold nanoparticles conjugated with secnidazole (GNPs-HSA-Snd) revealed two peaks at 320 nm and 525 nm corresponding to secnidazole aromatic nitrite transitions and GNPs-HSA respectively, suggesting its binding to GNPs-HSA. TEM micrographs of GNPs–HSA-Snd revealed the size of these nanoparticles to be 7 ± 2 nm, whereas DLS confirmed their size (18 ± 3nm) in terms of hydrodynamic diameter due to the interaction and binding of solvent to the surface of nanoparticles.

Eventually, the GNPs-HSA and GNPs-HSA-Snd were found to be negatively charged with a zeta potential of -13.3 mV and -7.97 mV respectively. The quantitative estimation of secnidazole conjugated with GNPs-HSA was determined by RP-HPLC chromatography by using the C-18 column. The amount of bioconjugated secnidazole was found to be 70% indicating efficient binding of secnidazole with GNPs-HSA.

Chapter 4 acknowledges the antibacterial activity of AgNPs, NdNPs and GNPs-HSA-Snd (synthesized in chapter 2 and 3) against different pathogenic bacteria. The bacterial strains *Myroides odoratimimus* (Accession No. KC967214), *Acinetobacter lwoffii* (Accession No. KC967215), *Bacillus sp.* (Accession No. KC967216) and fungal strains *Aspergillus fumigatus* (Accession No. KF913250) and *Aspergillus sp.* (Accession No. KF913249) mediated synthesized AgNPs and NdNPs showed substantial antibacterial potential. The best MIC was observed for *Aspergillus sp.* mediated synthesized AgNPs against *Escherichia coli* (NCIM 2065) and it was found to be 20µM/ml. Similarly, for NdNPs, synthesized by *Aspergillus fumigates* showed best antibacterial activity against *Micrococcus luteus* (NCTC 10240) and it was found to be 11.49µM/ml

It was observed that GNPs-HSA-Snd showed greater potency against *Klebsiella pneumoniae* (NCIM 2957) and *Bacillus cereus* (NCIM 2156) than pure drug and it was found to be 12.2 and 14.11 times respectively. The antimicrobial activity of the nanoparticles is due to the penetration of NPs into the bacterial cells and production of ROS, damage of cell membrane, and release of cell contents for AgNPs. It is suggested that the shape and size of AgNPs and release of silver ions from the nanoparticles, might have contributed to the bactericidal properties.
Furthermore, *in-vitro* cytotoxicity of AgNPs, NdNPs, pure bromelain and bromelain encapsulated GNPs (brom-GNPs) were tested against the selected human cancer cell lines, such as MCF-7, MDA-MB 231, A549, HeLa and normal cell line 3T3-L1. These NPs were found highly effective against prescribed cell lines. The dose-response activities were checked by MTT assay and IC50 was calculated. *Aspergillus sp.* mediated synthesized AgNPs showed maximum activity against lung cancer cells (A549) and IC50 for the same was found to be 133 µM/ml. Similarly, *Aspergillus fumigatus* mediated synthesized NdNPs showed substantially greater activity against HeLa cancer cell line with IC50 428 µM/ml. The change in potency of bromelain after capping with GNPs and pure bromelain were studied by MTT assay against 3T3-L1, MCF-7 and MDA-MB 231. IC50 for brom-GNPs were found to be 24.54 µg/ml, 12.12 µg/ml and 7.70 µg/ml against 3T3-L1, MCF-7 and MDA-MB 231, respectively, and IC50 for pure bromelain were found to be 10.7 µg/ml, 14 µg/ml, and 8.71 µg/ml against 3T3-L1, MCF-7 and MDA-MB 231, respectively. The biosynthesized AgNPs induce apoptosis in the selected human cancer cells as shown by the ultra-structural changes observed in the form of cell shrinkage, formation of membrane blebs and apoptotic nuclei which was analysed by the ROS (reactive oxygen species) and DAPI (4',6-diamidino-2-phenylindole) nucleic acid staining method.

Moreover, studies are needed to elucidate the toxicity and the mechanism involved with antimicrobial and anticancer activity of the synthesized AgNPs, NdNPs and GNPs.

Chapter-5 deals with the development of an animal model of primary lung cancer for investigating the mechanism of diseases and for the development of therapeutic strategies. A reproducible mice model for lung carcinoma was successfully developed by using oral dosage of N-nitrosodiethylamine (NDEA) followed by, again, oral dosage of phenobarbitone (PB). After 15 days of oral administration of NDEA (100ppm to 150ppm), the tumor was promoted with 500ppm dosage of Phenobarbitone (PB) along with set concentration of NDEA for another 15 days. Tumors were detected in 58.33% of mice provided with 100 ppm NDEA along with 500 ppm of PB. While, 75.00% of mice were observed to developed tumor provided with 150 ppm NDEA along with 500 ppm of PB in drinking water. Characteristic features of these lung tumors, were: (i) Appearance of
tumors within a short period of time, (ii) dose-related progression of the lung carcinogenesis (iii) Targeted lung carcinogenesis with no effect on other organs and (iv) No specific strain of mice was required (as in the present study lung cancer is induced in Swiss albino mice). Further, the mechanism of NDEA induced lung carcinogenesis was investigated by studying the inhibitory effect of NDEA on Dual specificity phosphatase-1 (DUSP-1) using molecular docking. Free energy of binding for ‘NDEA- DUSP1catalytic domain-interaction’ was found to be -3.99 kcal/mol.

Further, *in vivo* toxicity of bromelain mediated GNPs was studied. For the study, brom-GNPs were given intraperotinary in the mice and they were observed for 24-48hrs. The numbers of dead mice were counted and probit values were calculated. The probit values were ploted against log/doses and then the dose corresponding to probit 5, i.e, 50% was found to be log LD50=1.41 which corresponds to LD50=25.7mg/kg body weight.

The present study has limitations in giving information about the association of different oncogene products with early stages of carcinogenesis. However, it can be safely stated that this study provides a technique to develop a lung cancer model using Swiss albino mice.

Hence, this thesis is the complete study of synthesis of biogenic inorganic nanoparticles, their characterization and bioconjugation with drug(s) and subsequently, their effect on pathogenic bacteria and cancer cell lines. Apart from *in vitro* studies, an *in vivo* study to check their acute toxicity was also conducted. This thesis proposes bromelain encapsulated gold nanoparticles as a safe therapeutic agent and a vehicle for drug delivery system.