Chapter 1 Introduction and Review of literature

1.1 Introduction
1.2 Review of literature
 1.2.1 Biodiversity and prokaryotic diversity: An introduction
 1.2.2 Importance of studying prokaryotic diversity
 1.2.2.1 Prokaryotes (Why are they so diverse?)
 1.2.2.2 Prokaryotic diversity: Current perception
 1.2.3 Approaches to study prokaryotic diversity
 1.2.3.1 Culture dependent approach
 1.2.3.1.1 Various strategies of culture dependent approach
 1.2.3.1.2 Taxonomy of culturable bacteria: Development of prokaryotic systematics
 1.2.3.1.3 Methods and parameters used for prokaryotic species circumscription
 1.2.3.1.4 The species concept in the prokaryotic world
 1.2.3.2 Culture independent study of prokaryotic diversity
 1.2.3.2.1 Impact of 16S rRNA gene sequence based approach on bacterial phylogeny
 1.2.3.2.2 Biochemical based approaches
 1.2.3.2.3 Molecular based approaches
 1.2.4 Current picture of prokaryotic phyla
 1.2.4.1 Bacterial phyla
 1.2.4.2 Archaeal phyla (Current status of Archacal taxonomy)
 1.2.5 Landfill environment and metabolic activities of prokaryotes
1.2.6 Studying anaerobic bacteria: Ways to culture them

1.2.6.1 Roll tube technique
1.2.6.2 Anaerobic workstations

1.2.7 Methanogens

1.2.7.1 Nutritional and biochemical characteristics
1.2.7.2 Physiological characteristics of methanogens
1.2.7.3 Phylogenetic diversity of methanogens

1.2.8 Syntrophic bacteria

1.2.9 Homoacetogenic bacteria

1.2.10 Landfill prokaryotic diversity

1.2.10.1 Importance of studying landfill prokaryotic diversity
1.2.10.2 Indian landfills
1.2.10.3 Survey of studies on landfill prokaryotic diversity

Chapter 2 Materials and Methods

2.1 Materials

2.1.1 Chemicals, labwares and instruments
2.1.2 Bacterial strains
2.1.3 Primers
2.1.4 Microbiological media

2.1.4.1 Media for aerobic bacteria
2.1.4.2 Media for obligate anaerobic bacteria

2.1.5 Reagents used in molecular biology
2.1.6 Biological buffers used for preparation of bacteriological media

2.2 Methods

2.2.1 Description of site and sample collection
2.2.2 Procedure for isolating and preserving aerobic bacteria
2.2.3 Procedure for isolating obligate anaerobic bacteria
2.2.4 Procedure for preserving obligate anaerobic bacteria

2.2.4.1 Examination of isolates for their obligate anaerobic nature
2.2.5 Checking polymer degrading potential of the isolates
2.2.6 Preliminary characterization of bacterial isolates (Conventional approach)
2.2.7 FAME, BIOLOG and partial 16S rRNA gene sequencing of bacterial isolates
2.2.8 Polyphasic characterization of bacterial isolates

2.2.8.1 Morphological characterization
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2.8.2 Physiological characterization of bacterial isolates</td>
<td>61</td>
</tr>
<tr>
<td>2.2.8.3 Biochemical characterization</td>
<td>62</td>
</tr>
<tr>
<td>2.2.8.4 Chemotaxonomic characterization</td>
<td>68</td>
</tr>
<tr>
<td>2.2.8.4.1 Whole cell fatty acid profile</td>
<td>68</td>
</tr>
<tr>
<td>2.2.8.4.2 Cell wall amino acid analysis</td>
<td>69</td>
</tr>
<tr>
<td>2.2.8.4.3 Determination of cell wall lipids</td>
<td>70</td>
</tr>
<tr>
<td>2.2.8.4.4 Determination of menaquinone types</td>
<td>71</td>
</tr>
<tr>
<td>2.2.8.5 Molecular biology techniques</td>
<td>73</td>
</tr>
<tr>
<td>2.2.8.5.1 Isolation of genomic DNA</td>
<td>73</td>
</tr>
<tr>
<td>2.2.8.5.2 Preparation of plasmid DNA</td>
<td>74</td>
</tr>
<tr>
<td>2.2.8.5.3 Estimation of DNA concentration</td>
<td>75</td>
</tr>
<tr>
<td>2.2.8.5.4 Agarose gel electrophoresis of DNA</td>
<td>75</td>
</tr>
<tr>
<td>2.2.8.5.5 Mol % G+C determination of genomic DNA</td>
<td>75</td>
</tr>
<tr>
<td>2.2.8.5.6 Amplification of 16S rRNA gene</td>
<td>76</td>
</tr>
<tr>
<td>2.2.8.5.7 Purification of PCR product by gel extraction</td>
<td>76</td>
</tr>
<tr>
<td>2.2.8.5.8 DNA-DNA hybridization</td>
<td>76</td>
</tr>
<tr>
<td>2.2.8.5.9 DNA sequencing</td>
<td>78</td>
</tr>
<tr>
<td>2.2.8.5.10 Analyses of 16S rRNA gene sequences</td>
<td>79</td>
</tr>
<tr>
<td>2.2.8.5.11 Sequence deposition at GenBank</td>
<td>80</td>
</tr>
<tr>
<td>2.2.9 Culture independent analyses</td>
<td>80</td>
</tr>
<tr>
<td>2.2.9.1 Isolation of total community DNA from landfill soil samples</td>
<td>80</td>
</tr>
<tr>
<td>2.2.9.2 Purification of total community DNA</td>
<td>82</td>
</tr>
<tr>
<td>2.2.9.3 PCR amplification of 16S rRNA gene from landfill soil samples</td>
<td>82</td>
</tr>
<tr>
<td>2.2.9.4 Construction of 16S rRNA gene library</td>
<td>83</td>
</tr>
<tr>
<td>2.2.9.5 Amplified rDNA restriction analyses (ARDRA)</td>
<td>85</td>
</tr>
<tr>
<td>2.2.9.6 Sequencing of the clones and their phylogenetic analyses</td>
<td>85</td>
</tr>
<tr>
<td>2.2.10 Community physiological profiles of 3ft, 5ft and 5.5ft samples</td>
<td>86</td>
</tr>
</tbody>
</table>

Chapter 3 Results (Prokaryotic Diversity of Landfill) 87

3.1 A brief introduction to the overall study 87

3.2 Diversity of culturable bacteria of surface soil 87

3.2.1 Plating and isolation of strains 87

3.2.2 Preliminary characterization of isolates from surface soil 87

3.2.3 Detailed characterization of surface isolates 88

3.2.4 Novel taxa 96
3.2.4.1 Strain SK 55 (A member of a novel genus and reclassification of *S. macmurdoensis*)

3.2.4.2 Strain SK 18 (*Microbacterium immunditiiarum* sp. nov.)

3.2.4.3 Strain SK 65 (A novel species of *Roseomonas*)

3.2.4.4 Strain SK 12 (A novel species of *Bacillus*)

3.2.5 Isolates belonging to the genus *Bacillus*

3.2.6 Isolates belonging to genera other than *Bacillus*

3.2.7 Summary of diversity of culturable bacteria of surface sample

3.3 **Diversity of culturable bacteria of 3ft sample**

3.3.1 Plating and isolation of strains

3.3.2 Cross-growth pattern analyses and characterization of hydrolytic activity of the isolates

3.3.3 Characterization of isolates from the 3ft sample

3.3.4 Isolates belonging to the genus *Bacillus*

3.3.5 Isolates within *Bacillus* rRNA group 2

3.3.6 Isolates within other genera

3.3.7 Strain PCA 19 (A novel taxon within *Alphaproteobacteria*)

3.3.8 Summary of diversity of culturable bacteria of 3ft sample

3.4 **Prokaryotic diversity as revealed by culture independent analysis of the 3ft sample**

3.5 **Second round of sampling**

3.5.1 Physiological and metabolic profiling of the community structure

3.5.2 Analysis of chemical parameters of landfill samples

3.5.3 Diversity of culturable bacteria of second round of sampling

3.5.3.1 Plating and isolation of strains

3.5.3.2 Characterization of aerobic bacteria from 3ft, 5ft and 5.5ft depths

3.5.3.3 Novel taxa (Gram-positive bacteria)

3.5.3.3.1 Strains 5.5LF 38TD & 48TD (Novel *Bacillus* sp.)

3.5.3.3.2 Strains 3LF 40T & 5LF 22P (Novel *Paenibacillus* sp.)

3.5.3.3.3 Strains 3LF 16P & 5.5LF 38T (Unusual *Bacillus* sp.)

3.5.3.3.4 Strains 5LF 17TD & 5LF 43TD (Potential novel genera within *Bacillus* group 1)

3.5.3.5 Strain 3LF 29T (*Bacillus silvestris*)

3.5.3.6 Strain 3LF 22T (A member of *Terribacillus goriensis*)

3.5.3.4 Isolates belonging to the genus *Bacillus*
3.5.3.5 Isolates belonging to other genera
3.5.3.6 Gram-negative taxa
3.5.3.6.1 Strain 5LF 19TDLC (A novel taxon with uncertain taxonomic placement)
3.5.3.6.2 Strains 3LF 17P (Pseudomonas aeruginosa) & 3LF 28TD (P. oryzihabitans)
3.5.3.7 Summary of diversity of culturable bacteria of 3ft, 5ft and 5.5ft samples
3.5.4 Culture independent study
3.5.4.1 Isolation of community DNA, PCR amplification of 16S rRNA gene and construction of libraries
3.5.4.2 ARDRA of bacterial clones
3.5.4.3 Sequencing and phylogenetic analyses of the bacterial clones
3.5.4.4 Phylogenetic study of archaeal clones
3.5.5 Diversity of obligate anaerobic bacteria
3.5.5.1 Plating and isolation of strains
3.5.5.2 Characterization of obligate anaerobic bacteria
3.5.5.3 Strain SRB 102 (Desulfotomaculum indicum sp. nov.)

Chapter 4 Discussion
4.1 Diversity of culturable bacteria of the landfill samples
4.1.1 Overall picture of bacterial diversity
4.1.2 Novel taxa
4.1.3 Taxonomic revision of 3 taxa
4.2 Culturable diversity in relation to landfill environment
4.3 Culture-independent analysis of prokaryotic diversity in relation to landfill environment
4.3.1 Archaeal diversity
4.3.2 Bacterial diversity
4.4 A comparison of culture-dependent and independent approaches
4.5 A model for degradation of organic substrates in the landfill

Chapter 5 Conclusion
5.1 Highlights of the work

Bibliography