CONTENTS

CHAPTER I: INTRODUCTION

1.1 OVERVIEW
1.2 THE KIDNEYS
 1.2.1 Anatomy
 1.2.2 Structure and function
1.3 KIDNEY DISEASE AND TYPES
 1.3.1 Definition of Kidney disease
 1.3.2 Types of Kidney disease
 1.3.2.1 Acute Kidney Disease
 1.3.2.2 Chronic kidney disease
1.4 DEFINITION OF CHRONIC KIDNEY DISEASE
1.5 MEASUREMENT OF GLOMERULAR FILTRATION RATE
1.6 EPIDEMIOLOGY AND HEALTH BURDEN OF CHRONIC KIDNEY DISEASE
 1.6.1 Prevalence
 1.6.2 Epidemiology of CKD in India
 1.6.3 Health care and economic burden
1.7 RISK FACTORS OF CKD
1.8 PATHOPHYSIOLOGY OF CKD
1.9 THE NATURAL HISTORY OF CHRONIC KIDNEY DISEASE
1.10 MANAGEMENT OF ESRD
 1.10.1 Peritoneal Dialysis
 1.10.2 Hemodialysis
1.11 CARDIOVASCULAR RISK AND CHRONIC KIDNEY DISEASE
 1.11.1 Cardiovascular risk in end-stage renal disease
 1.11.2 Cardiovascular risk in early stage chronic kidney disease
1.12 THE CAUSES OF CARDIOVASCULAR DEATH IN CHRONIC KIDNEY DISEASE
1.13 THE NATURE OF CARDIOVASCULAR DISEASE IN CHRONIC KIDNEY DISEASE

1.13.1 Changes in cardiac structure and function - uremic cardiomyopathy

1.13.2 Left ventricular hypertrophy

1.14 CORONARY HEART DISEASE IN CKD

1.15 SCOPE OF PRESENT INVESTIGATION

CHAPTER II: REVIEW OF LITERATURE

2.1 HISTORY OF KIDNEY DISEASE

2.2 REVIEW OF GLOMERULAR FILTRATION RATE (GFR)

2.3 REVIEW OF LIPID PROFILE AND LIPID Peroxidation in CKD

2.4 REVIEW OF ANEMIA PROFILE IN CKD

2.5 REVIEW OF CARDIAC MARKERS IN CKD

2.6 REVIEW OF PROTEOMICS AND CKD

CHAPTER III: ESTIMATED GFR FOR THE ASSESSMENT OF CKD

3.1 INTRODUCTION

3.2 MATERIAL AND METHODS

3.2.1 Selection of cases

3.2.2 Selection of control

3.2.3 Demographic parameters

3.2.4 Estimation of blood urea

3.2.5 Estimation of serum creatinine

3.2.6 Estimation of eGFR by Cockcroft-Gault formula

3.2.7 Estimation of eGFR by MDRD formula

3.2.8 Estimation of eGFR by MCQE formula

3.2.9 Statistical analysis

3.3 RESULTS AND DISCUSSION

3.3.1 Demographic features and diagnostic parameters

3.3.2 Importance of eGFR
3.3.3 Cockcroft and Gault formula
3.3.4 MDRD formula
3.3.5 MCQE formula
3.3.6 Comparison of three formulae between control and cases
3.3.7 Comparison of three formulae age wise
3.3.8 Distribution of controls into different stages on the basis of eGFR
3.3.9 Distribution of cases into different stages on the basis of eGFR
3.4 CONCLUSION

CHAPTER IV: LIPID PROFILE AND LIPID PEROXIDATION IN CKD

4.1 INTRODUCTION
4.2 MATERIAL AND METHODS
4.2.1 Selection of cases
4.2.2 Selection of control
4.2.3 Estimation of serum triglycerides
4.2.4 Estimation of serum total cholesterol
4.2.5 Estimation of serum HDL cholesterol
4.2.6 Estimation of serum LDL and VLDL cholesterol
4.2.7 Estimation serum MDA
4.2.8 Estimation of serum SOD
4.2.9 Statistical analysis
4.3 RESULTS AND DISCUSSION
4.3.1 Demographic features and diagnostic parameters
4.3.2 Effect of triglyceride in both groups of CKD
4.3.3 Unchanged Cholesterol concentration in both groups of CKD
4.3.4 Unaltered LDL- C in both groups of CKD
4.3.5 Decrease in HDL-C concentrations in both groups of CKD
4.3.6 Rise in VLDL-C in both groups of CKD
4.3.7 Increased levels of MDA in CKD patients
4.3.8 Decreased SOD in CKD both groups
4.4 CONCLUSION
CHAPTER V: ANEMIA AND CKD

5.1 INTRODUCTION

5.2 MATERIAL AND METHODS

5.2.1 Selection of cases

5.2.2 Selection of control

5.2.3 Complete Blood Count (CBC)

5.2.4 Blood film preparation and examination

5.2.5 Estimation of Serum Hemoglobin by Cyanmethemoglobin Method

5.2.6 Estimation of Serum Iron & TIBC

5.2.6.1 Iron Assay Procedure

5.2.6.2 TIBC Assay Procedure

5.2.7 Calculation of Transferrin saturation

5.2.8 Estimation of serum ferritin

5.2.9 Statistical analysis

5.3 RESULTS AND DISCUSSION

5.3.1 Demographic features and diagnostic parameters

5.3.2 Hematological changes in CKD both groups

5.3.3 Decreased serum iron in both groups of CKD

5.3.4 Alteration of Serum TIBC and Tsat% in both groups of CKD

5.3.5 Increased serum ferritin in both groups of CKD

5.3.6 Classification of CKD based on MCV

5.3.7 Peripheral smear examination in CKD both groups

5.4 CONCLUSION

CHAPTER VI: CARDIAC MARKERS AND CKD

6.1 INTRODUCTION

6.2 MATERIAL AND METHODS

6.2.1 Selection of cases

6.2.2 Selection of control

6.2.3 Blood pressure measurement

6.2.4 Electrocardiography
CHAPTER VI:

I: PROTEOMIC ANALYSIS OF SERUM IN HEMODIALYSIS PATIENTS WITH LEFT VENTRICULAR HYPERTROPHY

7.1 INTRODUCTION
7.2 MATERIAL AND METHODS
7.2.1 Selection of control and cases
7.2.2 Collection and storage of sample
7.2.3 Pooled serum sample
7.2.4 2D-DIGE procedure
7.2.5 In-gel digestion
7.2.6 Prediction of protein sequence, structure and their interactions.

7.2.6.1 Prediction of protein sequence using MALDI-TOF
7.2.6.2 Protein Modeling and Validation
7.2.6.3 Protein structure validation
7.2.6.4 Prediction of protein partners
7.3 RESULTS AND DISCUSSION
7.3.1 Demographic features and diagnostic parameters
7.3.2 DIGE analysis
7.3.3 Spot selection
7.3.4 Analysis of Spot Id 1649
7.3.5 Analysis of Spot Id 45
7.3.6 Analysis of Spot Id 137
7.3.7 Analysis of Spot Id 1578
7.3.8 Analysis of Spot Id 48
7.3.9 Analysis of Spot Id 109
7.4 CONCLUSION

THESIS CONCLUSION

BIBLIOGRAPHY