TABLE OF CONTENTS

CHAPTER 1: GENERAL INTRODUCTION

1.1 Introduction
1.2 Rice nutritional properties and challenges
1.3 Seed storage protein
1.4 Transgenic plants as a factory for human useful recombinant protein
1.5 Improvement of protein quality in crop plant
1.5.1 Strategies for improvement of protein quality in crop plant
1.6 Plant regeneration and transformation approaches
1.6.1 Plant regeneration
1.6.1.1 Meristems
1.6.1.2 Somatic embryogenesis
1.6.1.3 Organogenesis
1.6.2 Gene transfer techniques
1.6.2.1 Agrobacterium-mediated transformation
1.6.2.2 Biolistic transformation
1.6.3 Selectable markers and screenable markers
1.7 Genetic engineering of rice
1.8 Aim and scope

CHAPTER 2: ESTABLISHMENT OF IN-VITRO REGENERATION AND TRANSFORMATION SYSTEM FOR RICE

2.1 Introduction
2.2 Materials and methods
2.2.1 Rice cultivar, explant and seed sterilization
2.2.2 Callus induction and somatic embryogenesis
2.2.3 Agrobacterium strain, co-cultivation and infection
2.2.4 Selection
2.2.5 Regeneration
2.2.6 Rooting
2.2.7 Transient GUS expression
2.2.8 Molecular analysis
2.3 Results and discussion
2.3.1 Callus induction
2.3.2 Shoot regeneration
2.3.3 Root induction
2.3.4 Selection
2.3.5 Transient expression and molecular analysis
2.4 Conclusion

CHAPTER 3: AmAl GENE TRANSFER IN RICE

3.1 Introduction
3.2 Construction of rice seed specific expression vector for AmAl gene
3.2.1 Material and methods
3.2.1.1 Cloning of NRP33 and Bx-7 promoter in pGEM-T Easy Vector
3.2.1.1.1 PCR amplification of seed specific promoter region
3.2.1.1.2 Elution of DNA from agarose Gel
3.2.1.1.3 Ligation of the eluted DNA fragment to pGEM T–Easy vector
3.2.1.1.4 Preparation of competent bacterial Cells
3.2.1.1.5 Transformation of E.coli DH5-alpha and GM2163 competent cells
3.2.1.1.6 Screening of the transformants
3.2.1.1.7 Small scale plasmid DNA isolation: (Mini preparations)
3.2.1.2 Subcloning of NRP33 and Bx-7 promoter in pBS KSII(+/-)
3.2.1.2.1 Vector preparation
3.2.1.2.2 Insert preparation
3.2.1.2.3 Ligation and transformation
3.2.1.3 Cloning of NRP33 and Bx-7 promoter in pSB8 construct
3.2.1.3.1 Vector preparation
3.2.1.3.2 Insert preparation
3.2.1.3.3 Ligation and transformation
3.2.1.3.4 Screening and selection of recombinants clones
3.2.1.3.4.1 PCR confirmation of recombinant clone
3.2.1.3.4.2 Restriction digestion
3.2.1.3.4.3 Southern blotting of recombinant clone
3.2.1.4 Mobilization of expression plasmid in Agrobacterium
3.2.1.4.1 Triparental mating
3.2.1.4.2 Colony hybridization
3.2.1.4.3 Hybridization and Washing
3.2.1.4.4 Picking up the positive colonies
3.2.1.4.5 Storage of bacterial strains
3.2.2 Results and discussion
3.2.2.1 Construction of AmAl gene expression vector for rice
3.2.2.2 Conjugation of recombinant plasmid into Agrobacterium and confirmation
3.3 Agrobacterium transformation of rice
3.3.1 Material and methods
3.3.1.1 Callus induction
3.3.1.2 Co-cultivation, infection and selection
3.3.1.3 Regeneration
3.3.1.4 Rooting
3.3.1.5 Hardening
3.3.2 Results
3.4 Molecular analysis of putative transgenic rice plants
3.4.1 Materials and method
3.4.1.1 Transgene insertion
3.4.1.1.1 Plant genomic DNA isolation
3.4.1.1.2 PCR analysis
3.4.1.1.3 DNA sequencing
3.4.1.1.4 Copy number detection by Real Time PCR
3.4.1.2 Transgene expression
3.4.1.2.1 Protein extraction from seed materials:
3.4.1.2.2 SDS-polyacrylamide gel electrophoresis (PAGE) of proteins
3.4.1.2.3 Western blot analysis
3.4.1.2.3.1 Transfer
3.4.1.2.3.2 Immunodetection
3.4.1.3 Trait fulfillment
3.4.1.3.1 Digestion of the Sample
3.4.1.3.2 Distillation
3.4.1.3.3 Titration
3.4.1.4 Transgene stability
3.4.2 Results and discussion
3.4.2.1 Transgene insertion
3.4.2.1.1 PCR Analysis
3.4.2.1.2 DNA sequencing
3.4.2.1.3 Real Time PCR for copy number detection
3.4.2.2 Transgene expression
3.4.2.3 Trait fulfillment
3.4.2.4 Transgene stability

Chapter 4: Summary

Chapter 5: References

Appendix