Chapter 3: The genome-scale interplay among xenogene silencing, stress response and chromosome architecture in *E. coli*

This work has been published as

3.1 Abstract

The gene expression state of exponentially-growing *Escherichia coli* cells is manifested by high expression of essential and growth-associated genes and low levels of stress-related and horizontally-acquired genes. An important player in maintaining this homeostasis is the H-NS-StpA gene silencing system. A ΔhnsΔstpA deletion mutant results in high expression of otherwise-silent horizontally-acquired genes, many located in the terminus-half of the chromosome, and an indirect down-regulation of many highly expressed genes. The ΔhnsΔstpA double mutant displays slow growth. Using laboratory evolution we address the evolutionary strategies that *E. coli* would adopt to redress this gene expression imbalance. We show that two global gene regulatory mutations – (a) point mutations inactivating the stress-responsive sigma factor RpoS or σ38 and (b) an amplification of ~40% of the chromosome centred around the origin of replication – converge in partially reversing the global gene expression imbalance caused by ΔhnsΔstpA. Transcriptome data of these mutants further shows a three-way link among the global gene networks of H-NS and σ38, as well as chromosome architecture. Increasing gene expression around the terminus of replication results in a decrease in the expression of genes around the origin and vice-versa; this appears to be a persistent phenomenon observed as an association across ~300 publicly-available gene expression datasets for *E. coli*. These global suppressor effects are transient and rapidly give way to more specific mutations, whose roles in reversing the growth defect of H-NS mutations remain to be understood.

3.2 Introduction

A variety of parameters orchestrate the gene expression state of a cell. For example, several global transcription factors and chromatin structuring proteins – together with a constellation of local transcription regulators – ensure maintenance of gene expression homeostasis. In exponentially-growing *Escherichia coli* cells, many essential and growth-associated genes are expressed at high levels, whereas stress-related and horizontally-acquired genes are maintained in low or silent expression states. Global disruption of this balance between the expression levels of growth-associated and stress-related genes, by mutations in regulatory proteins, can be expected to adversely affect fitness. Whether and how a bacterial cell adapts to such a loss of fitness is a question that is of considerable
interest, more so in light of evidence that gain and loss of transcriptional regulatory functions is not uncommon [1].

A single chromatin-structuring gene-silencing system [2]–[4], whose central players are the protein H-NS and its homolog StpA [5], is responsible for a global shutdown of A+T-rich horizontally-acquired genes in *E. coli*. Loss of this gene silencing system dramatically upsets the gene expression balance of the cell, by causing otherwise silent loci to be expressed at exceptionally high levels [6]. This might – at least in part – be due to pervasive transcription [7] from A+T-rich sequence stretches to which H-NS and StpA bind. A Δ*hns-stpA* double mutant of *E. coli* K12 also suffers from a severe reduction in growth rate [8], which might emerge from the “cost” associated with uncontrolled expression of transcriptionally silent genes [6]. Being a regulator of horizontally-acquired genes, H-NS targets different gene functions even across closely-related bacteria (e.g. a large proportion of H-NS targets in *E. coli* are not conserved in *Salmonella* and vice-versa [9], making its regulatory network dynamic, and subject to disruption [10] by rampant horizontal gene acquisition.

We exploited these characteristics of the Δ*hns-stpA* double mutant to investigate the evolutionary trajectories that help *E. coli* redress the global disruption of its gene expression state, using *in-vitro* laboratory evolution experiments, analysed using deep sequencing of genomes and transcriptomes.

3.3 Materials and Methods

Strains and general growth conditions

The *Escherichia coli* variants used in the work are following: *E. coli K-12 MG1655* wild type (CGSC #6300); MG1655 Δ*hns-stpA* (Δ*hns-stpA::kan*); Δ*hns-stpA-rpoS* (Δ*hns-stpA-rpoS::kan*). HS100 refers to the population of Δ*hns-stpA* mutant evolved for ~100 hours under laboratory conditions and HS250 to those evolved for ~250 hours. *ori* refers to a single colony isolated from HS100, showing a duplication of ~2 Mb region around the origin, and *rpoSmut* to a single colony from HS100, with an inactivating point mutation in *rpoS*. Luria broth was used for normal growth, 50 ug/mL of ampicillin or kanamycin was used as per requirement.

Construction of *E. coli K12 MG1655* knock-outs

All gene deletions were achieved by the Lambda Red recombination system, described by Datsenko and Wanner using primers pKD46 and pKD4 or pKD13 [11]. Knockout strains generated by this method were selected on LB Kanamycin (50mg/mL) plates and deletion was confirmed by PCR using specific primers. Double knockouts were also generated by the same method after removing the kanamycin cassette using pCP20.

Laboratory evolution experiments
The laboratory evolution experiment was carried out for two parallel populations of an overnight grown culture, revived from the frozen stock made from a single colony of \(\Delta hns-stpA\). Cells were grown in 24-well plates, shaking at 200 rpm, until late exponential phase and diluted by a factor of 1:50 into fresh LB broth. Glycerol stocks were made at the end of every passage. HS100 and HS250 – populations evolved for \(~100\) hrs and \(~250\) hrs respectively – were selected for genome sequencing. For single colony genome sequencing, a sample of HS100 or HS250 cells was plated on LB agar, and single colonies picked; glycerol stocks were made for all the single colonies isolated. This procedure is represented by a schematic figure in Annexure-II Figure 1.

Growth curves

Overnight grown culture was inoculated in fresh LB to a 1:100 ratio and the growth of cells monitored by measuring the optical density at 600nm. All these growth experiments were performed in 96 well plates, incubated at 37°C in a plate reader (Tecan, infinite® F200 PRO) with constant shaking. OD\(_{600}\) was measured every \(~16\) minutes. Each growth curve trial comprised two biological and six technical replicates.

Whole Genome Sequencing

Genomic DNA was isolated from \(\Delta hns-stpA\) and evolved strains using SIGMA GenElute™ Bacterial Genomic DNA Kit (Cat.No. NA2120) using the manufacturer’s protocol. Sequencing library was prepared for Illumina sequencing and the quality of the libraries checked using Agilent Bioanalyzer at the genomics facility, Centre for Cellular and Molecular Platforms (C-CAMP), Bangalore. DNA isolated from HS100 and HS250 populations was sequenced for 50 cycles from one end, and that from the single colonies sequenced for 100 cycles from both ends. The sequencing was performed on the Illumina HiSeq1000 platform at C-CAMP. Raw data have been deposited with NCBI-SRA under the accession number SRP043310.

Mutation calling

50-mer single end reads obtained from HS100 and HS250 populations were mapped to *E.coli* K12 MG1655 genome (NC_000913, v2) using BWA [12] using the -q 20 parameter, sorted and indexed with SAMtools [13]. SNPs and indels were detected using VarScan [14]. SNPs supported by more than 20% of reads from the population genome sequencing experiments are listed in Annexure-II Figure 2 and in Annexure-II Table 1; these lists include only those mutations, which were not detected in the parental genome of \(\Delta hns-stpA\). SNPs and indels were identified from the single colony genome sequencing data using the BRESEQ pipeline [15], which uses Bowtie [16] for sequence alignment; these results can be browsed at http://bugbears.ncbs.res.in/hns_evol. SNPs identified using this analysis were validated by Sanger sequencing using specific primers. Read coverage across the genome was calculated for non-overlapping windows of 200nt
each using custom scripts, and normalised by the mode of the distribution across these bins as described earlier (6). Coverage is defined by the number of sequencing reads that map to a region on the chromosome, and is represented on the log, base 2 scale.

RNA extraction and mRNA enrichment

For RNA extraction, the overnight cultures were inoculated in 100 mL of fresh LB to bring the initial OD$_{600}$ of the fresh culture to 0.03 and the flasks were incubated at 37°C with shaking at 200 rpm. Two biological replicates were performed for each sample. Samples were collected at the mid-exponential phase (OD$_{600}$ ~ 0.5 for Δhns-stpA; 0.7~0.8 for rpoSmut, Δhns-stpA-rpoS and ori2; 0.9 for the wildtype). Protocols, based on those recommended by the manufacturer for the TRIzol (Invitrogen) bacterial RNA isolation kit, were used for RNA isolation as described previously (6). Libraries were prepared for RNA-seq and sequenced for 50 cycles from one end on the Illumina HiSeq 1000 platform, following manufacturer's recommendations, at C-CAMP. Raw data have been deposited with NCBI-SRA under the accession number SRP043518.

Transcriptome data analysis

50-mer single-end sequence reads were mapped to the *E. coli* K12 MG1655 genome using BWA [12]. Gene annotations were obtained from the Ecocyc database [17]. The number of reads falling within each gene was calculated based on the base position to which first nucleotide of the read was mapped. A matrix containing the read count for each gene across the sequenced samples was fed into the Bioconductor (http://www.bioconductor.org) package EdgeR [18] for analysis of differential expression. The genes, which are differentially expressed by at least two-fold with a p-value of 0.00001, were considered for further analysis.

Differential expression in the ori2 strain was calculated differently. Here, the mode of the distribution of per-gene read counts [6] across only the non-amplified portion of the genome was used as a normalisation factor. This was performed for ori2 as well as the strains against which ori2 was compared: the parental Δhns-stpA and the wildtype. Read coverage distributions shown in Annexure-II Figure 3 indicate that this normalisation factor does not affect the gene expression measures for strains not carrying the amplification. The normalised read counts were processed for differential expression using the LIMMA pipeline [19]. Annexure-II Figure 4 shows a comparison of fold changes obtained using the above pipeline as well as the standard EdgeR procedure; this shows that there is a tight correlation between the two, except that the fold change estimates are consistently off by a factor of $2^{-0.3}$ across most genes.

Analysis of publicly available microarray data
Publicly-available gene expression (transcriptome) data for *E. coli* were downloaded from
the M3D database (http://m3d.mssm.edu; [20]). This comprises RMA-normalised gene expression measurements from Affymetrix microarrays across ~300 conditions. Pearson correlation coefficients (PCC) between pairs of gene expression vectors were calculated using a combination of PERL and R scripts. High positive PCC between a pair of genes indicates that their expression levels increase or decrease similarly across the conditions included in the dataset. A high negative PCC, on the other hand, indicates opposing gene expression patterns for the two genes (referred to as anti-correlation): an increase in the expression level of one gene is met with a corresponding decrease in that of the other. The chromosome was binned into segments of 100 kb each, and each gene assigned to a segment based on its position on the genome. For each pair of segments, the number of genes with correlated (PCC >= 0.5) or anti-correlated (PCC <= -0.5) gene expression vectors was computed and plotted as a matrix using the matrix2png web server (www.chibi.ubc.ca/matrix2png).

Validation of RNA sequencing data using RT-PCR

Selected RNA sequencing results - from comparisons involving rpoS mutants - were validated using quantitative Reverse Transcriptase - PCR. mRNA was isolated from the cells collected at the same time points as for RNA sequencing using TRIZOL, followed by DNase treatment. mRNA after DNase treatment was precipitated using ammonium chloride as described in the MICROBExpress RNA purification kit and used for the RT-PCR. RT-PCR reactions were carried out using the reagents provided with the Takara one step RT-PCR kit using manufacturer’s instructions. 16S RNA gene, rrsA was used as an internal control. The outcome of these experiments is presented in Annexure-II Table 2 (resulting in a Spearman correlation coefficient > 0.9 between fold-changes measured by RT-PCR and that by RNA-seq), and the primers used in Annexure-II Table 3.

Catalase Assay

10 µl of overnight grown culture was spotted on an LB agar plate and incubated at 37°C for 24 hours, after which 10µL of H₂O₂ was added. The cells with active σ38 effervesce almost immediately, whereas those with inactive σ38 show delayed effervescence. Approximate time taken for the effervescence to start was measured and used as a proxy for σ38 activity.

3.4 Results

Disruption of gene expression homeostasis in Δhns-stpA

To summarize the results from the previous chapter, The transcriptome of Δhns-stpA strain – relative to the wildtype - during mid-exponential phase in LB medium exhibits an increase in the expression of many A+T-rich genes, consistent with the known role of H-NS as a global gene silencer. This strain also displays a considerably smaller growth rate than the parental wildtype strain, and those of the two single mutants Δhns and ΔstpA [6], [8].
Here we generated new, higher-coverage RNA-seq data for Δhns-stpA, which are consistent with the above-described work. Here, we additionally report that a large number of genes are also down-regulated. In these data, ~920 genes were up-regulated in Δhns-stpA when compared to the wildtype, whereas ~650 were down-regulated in the mutant (Figure 3.1a). A significant proportion of up-regulated genes are also known to be bound by H-NS (~67%; $P < 10^{-10}$; Fisher's Exact Test), as deduced from ChIP-seq data identifying the in-vivo binding sites of H-NS on the E. coli chromosome during the mid-exponential phase of growth [9],[21]. In contrast, a much smaller percentage of the down-regulated genes are bound by H-NS. In fact, the chance that a H-NS-bound gene is down-regulated in Δhns-stpA is less than expected by random chance (~17%; $P \sim 10^{-6}$; Fisher's Exact Test). The fold change of differential expression per down-regulated gene is significantly less than that for up-regulated genes ($P < 10^{-10}$; Wilcoxon Test; Figure 3.1b). Genes that are down-regulated in the Δhns-stpA mutant showed a higher median wildtype expression level than those that are not ($P < 10^{-10}$; Wilcoxon Test; Figure 3.1c). The down-regulation of many genes with high expression levels may be an indirect consequence of the redirection of the limited pool of RNA polymerase molecules [22] to high level transcription of silent genes. This compensation might be consistent with the observation that the distribution of gene expression from ~2,000 E. coli promoters is invariant across conditions [23], even though the location of a given gene within the distribution may differ. Thus, loss of a global gene silencing system in E. coli not only results in the up-regulation of its direct targets, but also indirect down-regulation of a large number of otherwise highly-expressed genes, indicating a global disruption of gene expression homeostasis.
Figure 3. 1: Large-scale disruption of gene expression states in a Δhns-stpA mutant. Large-scale disruption of gene expression states in a Δhns-stpA mutant. (a) This figure shows a volcano plot of fold change (log2 scale) in expression levels between the Δhns-stpA double mutant and the wildtype on the x-axis, and the p-value (log10 scale) for the measured fold change on the y-axis. Red dots show genes that are up-regulated in the mutant relative to the wild type and green dots represent genes that are down-regulated in the mutant. (b) This panel shows distributions of absolute fold changes (log2 scale) for genes which are up- (red) or down-regulated (green) in Δhns-stpA relative to the wildtype. (c) This figure shows the wildtype expression levels of genes which are up- (red) or down-regulated (green) in Δhns-stpA relative to the wildtype; control genes, which are not significantly differentially expressed are represented by the grey coloured distribution.
In-vitro laboratory evolution of Δhns-stpA

We asked whether and how the bacterium would adapt to such a global upset of its gene expression state. Towards this, we performed in-vitro laboratory evolution experiments (Annexure-II Figure 1). In these experiments, two parallel populations of Δhns-stpA – derived from the same colony, isolated and frozen soon after the experimental deletion of hns and stpA – were grown in LB medium in 24-well plates under batch conditions. These experiments set up a dynamic ‘survival of the fittest’ competition in liquid cultures, selecting for bacterial variants that are fitter than the starting parent bacterium, leading to the discovery of suppressors of the growth defect of Δhns-stpA. Subculturing into fresh medium was performed towards the end of exponential growth or early in stationary phase. This ensures that selection will be for increasing growth rate, and not be influenced by stationary phase survival.

Figure 3. 2: Suppression of the growth defect of Δhns-stpA during the course of a laboratory evolution experiment. (a) This figure shows a heatmap representation of growth curves of bacterial populations obtained after the specified hours of evolution. Each row represents a snapshot of the evolution experiment, and each column a time point during a single batch culture. The snapshots labelled HS100 (~108 hours,
spread across 9 serial batch cultures) and HS250 (252 hours, across 21 serial batch cultures) were selected for population genome sequencing. The wildtype (bottom row) and the Δhns-stpA parent (top row) are also indicated. The colour in each cell is indicative of OD_{600}, with cyan representing lowest values and orange the highest. (b) This figure shows the growth curves of HS100 (black), HS250 (red), the wildtype (green) and the Δhns-stpA parent (blue). The error bars show the standard error across two biological and six technical replicates.

We observed a rapid, but steady increase in growth rate over the evolution experiment which together covered only a period of ~250 hours, spread across ~20 serial batch cultures (Figure 3.2a). For further analysis we studied the characteristics of the genomes of two frames, one from the 100-hour population and the other from the 250-hour population (HS100 for the ~100 growth-hour frame; HS250 for the ~250 growth-hour frame; Figure 3.2b), and compared them with those of the parent (Δhns-stpA). The discussion in this chapter will be largely restricted to our analysis of HS100, an early time-point in the evolution of Δhns-stpA towards higher fitness.

Growth recovery by σ38 inactivation

We performed deep sequencing (50-mer from a single end, Illumina HiSeq-1000) of populations – one for the parental population Δhns-stpA, and one for each of the two evolved lines for HS100 and HS250, giving ~250-380 fold coverage of the haploid genome per sample. Note that these sequences are not derived from single clones, but from populations. Therefore, subject to sampling errors [24], these data help identify most variants that are present above a certain level in the population. The proportion of reads supporting a variant could be expected to be roughly indicative of its prevalence in the population.

We first performed an analysis of point mutations and short indels in HS100 in comparison to Δhns-stpA (Annexure-II Figure 2; Annexure-II Website: http://bugbears.ncbs.res.in/hns_evol). This showed that the population is genetically heterogeneous, with differences between the two populations in the mutations accrued. All mutations detected were present only in a sub-population, indicating the presence of multiple trajectories. We do not discuss each of these mutations here, but present selected observations.

About 40% of the sequence reads from one of the two populations displayed a polymorphism in the rpoS gene, encoding the σ38 factor (RpoS) responsible for the general stress response of E. coli. We performed paired-end sequencing (100-mer from each end) of the genomes of 16 colonies, all derived from the HS100 population carrying the mutation in rpoS. Bacteria from each of the 16 colonies showed higher growth in liquid LB medium when compared with Δhns-stpA (Annexure-II Figure 5). Analysis of single-nucleotide
variations in these data, using the BRESEQ pipeline or otherwise from first principles, revealed the presence of different polymorphisms in rpoS (Annexure-II Figure 2; Annexure-II Website: http://bugbears.ncbs.res.in/hns_evol). For example, several mutants carried a STOP codon at position E43 or Y61 of the σ38 amino acid sequence, indicating an inactivating mutation. Together, 8 colonies (9 colonies, including one with a mutation supported by <85% of reads), carried at least one mutation in RpoS. That these mutations lead to inactivation of the σ38 regulon was verified by a simple test for catalase activity, in which a patch of cells with active σ38 effervesce rapidly on addition of H₂O₂, whereas those lacking functional σ38 do not (data not shown); this emerges from the dependence of the expression of catalase gene expression on σ38. To further validate the role of σ38 inactivation in increasing the growth rate of Δhns-stpA, we constructed a ΔrpoS-hns-stpA triple deletion mutant. This mutant shows a higher growth rate than Δhns-stpA, to a level comparable to that of the HS100 clones (Annexure-II Figure 6).

A large amplification and growth recovery

We performed a detailed analysis of the read coverage distribution of the HS100 population and compared it with that of Δhns-stpA. The read coverage is a measure of the relative abundance or copy number of a particular locus in a genome. In the Δhns-stpA population, we see a nearly uniform read coverage across the genome (Figure 3.3a), with exceptions including the rac prophage region (Annexure-II Figure 7), which appears to have been deleted at least in a sub-set of the population [25], and various other repetitive elements where unique read mapping is not possible.

The two HS100 populations however showed a different pattern. An ~2 Mb region around the origin of replication had an ~1.2-fold higher coverage than the remaining ~2.6 Mb centered around the terminus (Figure 3.3b-d). This ratio of the average coverage between the above-mentioned ~2 Mb segment around the origin and that for the rest of the chromosome will be referred to as Rc. This is not a gradual decrease in coverage from the origin to the terminus, which can be explained by the origin firing multiple times per cell division in rapidly-dividing exponential phase cells. Instead, the two domains are separated by sharp boundaries. To further validate the inferred presence of these breakpoints in sequencing coverage, we performed the read coverage distribution analysis for the 16 HS100 colonies that we had sequenced. We noticed the presence of the same pattern, only more prominent than in the population, in three colonies (20% of the colonies; Figure 3.3e-g). None of these colonies carried a mutation in rpoS, but had a mis-sense mutation in the gene fusA encoding the translation elongation factor EF-G. This mutation in EF-G appears in a significant proportion of the parental population as well (~30% of reads) and has expanded in HS100, probably hitch-hiking alongside the structural variation described here. Consistently across the data from the two HS100 populations and the three individual HS100 clones, the two boundaries are located at IS elements, one boundary being at insC1 and the other at insC5. insC1 and insC5 are identical in sequence and are part of the IS2
transposon, which is present in multiple copies in many *E. coli* strains.

Naively speaking, the data could be explained by both a deletion of the 2.5 Mb region around the terminus (in a sub-population within the colony), or an amplification of the 2 Mb domain around the origin. The former is unlikely, given the presence of the terminus of replication in the region, as well as that of a large number of genes essential for *E. coli* survival. On the other hand, amplification can be promoted by repetitive elements, including rRNA loci and other hand, amplification can be promoted by repetitive elements, including rRNA loci and transposable elements such as IS2, by unequal recombination [26].

We used computer simulations of read coverage from genomic DNA populations wherein the proposed duplication is prevalent to different extents (Annexure-II Figure 8) to systematically show the following. *Rc* values in the 1.2 range, as observed in the read coverage plots for the HS100 population, can be explained by the presence of an amplification in ~25% of the population, or a deletion in ~7% of the population. Given these numbers, the chance that three out of 16 sampled clones would display this coverage pattern is three times more likely under the duplication scenario than for the deletion scenario (Annexure-II Figure 9). Similarly, *Rc* values in the 1.5-1.8 range – as observed in the single-clone sequencing data – can be explained by an amplification in 60-80% of the genomic DNA molecules (Annexure-II Figure 9). That the fold difference does not approach two in these single-clone sequencing data may suggest rapid development of heterogeneity in the population during growth in liquid culture, possibly because of the instability of large duplications [27].
Figure 3.3: Amplification of ~40% of the E. coli chromosome around the origin of replication. The read coverage, on log2 scale, as a function of genome coordinate is plotted for (a) Δhns-tpA and for (b) the evolved population HS100. (c) This panel shows the distribution of read coverage across the chromosome for HS100, directing
the reader to its bimodal shape. (d) This panel shows the correlation in coverage between the two HS100 populations sequenced. (e-f) These sections show the read coverage – as a function of genome coordinate (left) and as a distribution (right) – for the three HS100 clones carrying the duplication. (h) This figure shows a circular plot of the chromosome, indicating the following key elements: insC1 and insC5, which are the end-points of the duplication; the origin (Ori) and the terminus (Ter) of replication. The outer circle marks the major structural domains of the chromosome as defined by the elegant definition of macrodomains (outer circle) by Valens and co-workers [39], where the unstructured elements are in white. The plot was drawn using the NuST web server [40]. The inner circle defines ‘chromosomal sectors’, which represent domains showing correlations between gene expression and codon usage [41].

We note here that evidence – albeit limited - from the sequencing data do not suggest abnormalities in the copy number of IS2 - the repetitive element that forms the boundaries of the duplicated segment - as a result of the duplication: Based on the number of IS2 elements encoded in the duplicated and the non-duplicated segments of the chromosome, we expect the copy number of IS2 to be ~25% higher in the strains with the duplication (assuming \(Rc = 1.8\)), when compared to the parent. The normalised number of reads that map to these repetitive elements is consistent with this expectation.

Reversal of the Δhns-stpA gene expression imbalance by σ38 inactivation

Next we selected, from the several fully-sequenced HS100 clones, one with an inactivating mutation in σ38 (referred to as \(rpoS^{mut}\), carrying a Y61* mutation in addition to deletions of \(hns\) and \(stpA\)), and one with the large chromosomal amplification around the origin of replication (\(ori^2\)). These clones, alongside a \(ΔrpoS-hns-stpA\) strain were subjected to RNA-seq experiments to assess the transcriptional changes occurring in these mutants relative to the parental \(Δhns-stpA\). In \(rpoS^{mut}\), ~320 genes were up-regulated relative to \(Δhns-stpA\), and ~420 down-regulated. A large proportion of genes (~80%; \(P < 10^{-10}\), Fisher's Exact Test) differentially expressed in \(rpoS^{mut}\) could be recapitulated in \(ΔrpoS-hns-stpA\) (Annexure-II Figure 10). Further, a significant proportion of genes that were down-regulated in \(rpoS^{mut}\) when compared to \(Δhns-stpA\) had previously been up-regulated in \(Δhns-stpA\) relative to the wildtype (~35%; \(P \sim 10^{-7}\), Fisher's Exact Test; Figure 3.4a). Similarly, many genes up-regulated in the former had been down-regulated in the latter comparison (~50%; \(P < 10^{-10}\), Fisher's Exact Test; Figure 3.4a). We emphasise that up-regulation of gene expression resulting from the inactivation of a σ-factor is likely to be an indirect effect. In summary, part of the gene
expression state imbalance experienced by Δhns-stpA is reversed by a further inactivation of σ38. This spans genes, which are up-regulated in Δhns-stpA as a direct consequence of the loss of H-NS-DNA interactions, as well as those which are down-regulated as collateral damage. In contrast, the chance that rpoSmut would further aggravate the gene expression state of Δhns-stpA is significantly less than random (P < 10^{-5} for up- and down-regulated genes; Fisher's Exact Test).
Figure 3.4: Converging transcriptional outputs of distinct evolutionary strategies.
(a) This panel shows a heatmap of differential expression in three comparisons: Δhns-stpA v. wildtype, rpoSmut v. Δhns-stpA and ori² v. Δhns-stpA. Red indicates up-regulation and blue, down-regulation. This shows that many of the transcriptional changes observed in the Δhns-stpA v. wildtype comparison are reversed in the latter two comparisons. Note that this representation includes only those genes for which differential expression in the Δhns-stpA v. wildtype comparison is reversed in at least
one of the other two comparisons shown. (b) This panel places the above result in the context of the chromosome organisation, showing that in all the three comparisons presented, up- and down-regulation are concentrated in distinct chromosomal regions. In these graphs, the pie slices represent chromosomal regions which are statistically enriched (P < 0.01) for a certain set of genes, defined here by the set of genes differentially-expressed (up-regulated in red; down-regulated in blue) in a stated comparison. The plot considers the density of genes at different scales on the genome using grids of different bin sizes, and compares empirical data with results from a random null model (shuffled gene positions). The colours in the circle indicate chromosomal macrodomains (green: ori domain; blue: left domain; cyan: ter domain; red: right domain; white: unstructured elements). This representation is derived from the NuST server (http://www.lgm.upmc.fr/nust/). insC1 and insC5, which mark the boundaries of the duplicated domain in ori2 are marked by the green dashed lines. (c) Similar to (b), but shows the subset of gene up- or down-regulated in the comparison, but reversed at least in part by one of the two suppressors.

Previous research had demonstrated a direct link between H-NS and σ38. In some Salmonella, obtaining a Δhns mutant is contingent on having a certain rpoS background [30]. Similarly, in E. coli mutations in rpoS suppress the growth defect of hns mutants [31]. In E. coli, partial inactivations of H-NS and σ38 interact at a genetic level to produce different physiological outcomes during distinct stages of growth [32]. Inactivation of H-NS increases σ38 levels by stabilising it through a cascade of regulatory interactions [33]. This would predict that many σ38 targets should be up-regulated when H-NS-mediated gene regulation is impaired, as demonstrated for up to ~20 genes by the Hengge group [31]. However, in our data only a small fraction of genes known to be σ38 targets (~15% of σ38 targets in our database) are affected by Δhns-stpA in comparison to the wildtype. In fact, this number appears to be slightly less than expected by random chance (P < 0.001; Fisher's Exact Test). Thus, the list of previously known targets of σ38 is substantially exclusive of genes up-regulated in Δhns-stpA and the effect of rpoSmut on these targets of H-NS (and StpA).

σ38 is known to activate transcription of several H-NS-repressed genes. This has been shown for selected promoters including those for the stationary phase-related nucleoid-associated protein Dps [34]. At present, ~20 H-NS targets documented in the RegulonDB database are known to be regulated by σ38. Despite this, our data show that the overlap between the targets of H-NS and σ38 is much bigger. What could be the possible sources of this difference? Perturbing σ38 activity in a wildtype background identified most σ38 targets known to date. However, there is evidence that H-NS might block access of A+T-rich DNA to other proteins [35], including RNA polymerase [36]. Thus, σ38 may have a role in transcribing certain H-NS targets only in the absence of H-NS from these loci. As shown in this study, the list of genes up-regulated in Δhns-stpA shows a significantly higher
overlap with those down-regulated in rpoSmut or ΔrpoS-hns-stpA, than with those previously known to be regulated by σ38 including those identified in a genome-wide screen [28] (\(P < 10^{-10}\); Fisher's Exact Test). Whether these effects of σ38 are direct or not can be further developed by ChIP-chip / ChIP-seq studies of σ38 in a Δhns-stpA background. In summary, σ38 inactivation in a Δhns-stpA background results in a partial reversal of the disruption of the gene expression imbalance experienced by Δhns-stpA, and the extent to which this occurs may be greater than reported previously.

Converging transcriptional outputs of the large chromosomal amplification and σ38 inactivation

Towards analysing the interplay between the large chromosomal amplification around the origin of replication and gene expression, we first tested whether genes up- or down-regulated in Δhns-stpA are differentially distributed between the amplified and the non-amplified segments of the chromosome. Genes which are down-regulated in Δhns-stpA (relative to the wildtype) are slightly more likely to be localised within the amplified segment of the chromosome, than those that are up-regulated (\(P \sim 5 \times 10^{-3}\); Fisher's Exact Test). This is consistent with the observation that H-NS-repressed genes are more likely to be localised around the terminus of replication than the origin [37], [38].

The chromosome of the reference *E. coli* used here encodes six repeated IS2 elements (with insC homologs), two of which form the boundaries of the amplification. Amplifications promoted by pairs of such elements located around the origin of replication could result in a similar distribution of H-NS-regulated genes between the amplified and the non-amplified part of the chromosome. However, we note that the pair of insC elements that we observe in our study is unique in being located symmetrically around the origin of replication (concurrent replication forks), as well as being in or close to the non-structured regions of the chromosome (Figure 3.3h) [39], which are more likely to be involved in recombination with distal loci. These features might make the reported amplification a more accessible evolutionary strategy than recombination events between other pairs of repeats.

Next, we compared the transcriptome of the evolved ori\(^2\) strain against the parental Δhns-stpA. For this, to account for possible artifacts that could be introduced in data analysis by the large duplication, we calculated the normalisation factor for the RNA-seq data using reads from the non-amplified segment and then used this factor to normalise the whole dataset (Annexure-II Figures 3 and 4). We find that as many as ~920 genes are up-regulated in ori\(^2\) relative to Δhns-stpA, whereas ~210 are down-regulated. As expected, a large majority of the up-regulated genes (66%; \(P < 10^{-10}\); Fisher's Exact Test) are localised to the amplified region of the genome.

Despite the large difference in the number of differentially expressed genes between
the ori² and rpoSmut evolved strains, they show convergent patterns (Figure 3.4a). Like the rpoSmut strain, the ori² strain also partly reverses the gene expression state disruption in the Δhns-stpA mutant. ori² up-regulates the expression levels of a majority of genes (at least 54%; \(P < 10^{-10} \); Fisher's Exact Test) that are down-regulated in Δhns-stpA compared to the wildtype. We note that many of these are located in the amplified portion of the chromosome and therefore represent direct effects of the duplication. Interestingly, ori² also results in the down-regulation of several genes up-regulated in the Δhns-stpA parent: ~42% (\(P = 4 \times 10^{-10} \); Fisher's Exact Test) of genes down-regulated in ori² had been up-regulated by Δhns-stpA relative to the wildtype. Overall, a large proportion of genes up-regulated in rpoSmut are also similarly affected in ori² (62%; \(P < 10^{-10} \); Fisher's Exact Test). Despite the similarities between the two evolved strains, the nature of the large amplification in ori² results in a significantly larger number of genes being up-regulated, resulting in a greater reversal of the transcriptional down-regulation experienced by Δhns-stpA relative to the wildtype.

We observe that genes, which are up-regulated in ori² show higher wildtype expression levels in mid-exponential phase than those that are not. Consistent with the discussion in the above paragraph, a majority of these genes are down-regulated two-fold or more in Δhns-stpA relative to the wildtype (Annexure-II Figure 11). These lend support to the idea that duplicating a segment of the chromosome around the origin of replication increases the relative dosage and expression of “good” genes with high expression levels during growth, and that the expression of these genes is adversely affected in Δhns-stpA.

Therefore, inactivation of RpoS and a segmental duplication of ~40% of the chromosome centred around the origin converge in partially reversing the transcriptional imbalance of the Δhns-stpA mutant. It is however not clear whether the suppression of the growth defect of Δhns-stpA by these two mutations emerges from the global transcriptional state itself or from their effects on a small subset of genes. For example, H-NS binds to many genes also regulated by the redox global transcription factor FNR [35]. We had noted previously that many FNR targets are specifically up-regulated in Δhns-stpA, but less so in the Δhns single mutant [6]. Here we observe that among the genes up-regulated in Δhns-stpA and then down-regulated by both rpoSmut and ori², are several genes involved in anaerobic metabolism under FNR control: these include components of at least two of the three nitrate reductases (Nap and NRA), and formate dehydrogenase. Whether these effects have any direct functional effect on fitness, or are mere coincidences, remains to be addressed. It is a moot point here that both rpoSmut and ori² are lost subsequently during the evolution experiment and mutations targeting more local regulatory systems emerge with stronger consequences to fitness. It is curious that among these mutations is one in the transcription factor AppY, which is regulated by H-NS and is a horizontally-acquired regulator of anaerobiosis.
Gene expression patterns in the context of chromosomal architecture

We tested for the presence of significant enrichments of differentially expressed genes in specific regions of the chromosome using the NuST web server [40]. This server divides the chromosome into multiple windows and checks whether a statistically significant number of genes within a given list (for example, genes up-regulated in \(\Delta hns-stpA \) compared to the wildtype) is present in any window, and presents these in a circular chromosome format (Figure 3.4b). This analysis shows the following: The direct role of H-NS and StpA in silencing gene expression by binding to the chromosome acts around the terminus of replication [37], [38]. In contrast, the indirect consequence of the \(\Delta hns-stpA \) mutant in down-regulating many highly expressed genes shows a slight preference to be localised in the origin-half of the chromosome, primarily in the unstructured region located on the left chromosomal arm (referred to as NS-L below). We note here that a part of NS-L is included in the duplicated region in \(ori^2 \). In contrast, the (probably) direct effect of \(rpoS^{erm} \) is the down-regulation of many genes around the terminus; this is consistent with previously published statistical analysis suggesting that stationary phase-induced genes tend to be encoded around the terminus [41]. However, this has the indirect consequence of up-regulating several genes in NS-L, which had been down-regulated by the \(\Delta hns-stpA \) mutation. The \(ori^2 \) mutant, while directly up-regulating genes in the amplified region around the origin including many within NS-L, also results in the down-regulation of several H-NS-regulated genes located around the terminus. Together, up-regulation of gene expression in \(\Delta hns-stpA \) and its reversal in either of the two suppressors is enriched in the terminus proximal half of the chromosome, with the opposing pattern more concentrated around the origin (Figure 3.4b; Figure 3.5b, bottom). The limits of the two “halves” of the chromosome are near the boundaries of the segmental duplication in \(ori^2 \), marked by \(insC1 \) and \(insC5 \). These together suggest a three-way link among H-NS-dependent gene silencing, \(\sigma^{38} \) function and chromosome organization in \(E. coli \). These results can be explored further at http://www.lgm.upmc.fr/scolari/srinivasanetal.

![Figure 3.5: Gene expression correlations in the context of chromosome organization](http://www.lgm.upmc.fr/scolari/srinivasanetal)
architecture. (a) This figure shows a histogram of the Pearson correlation coefficients between the expression vectors of all pairs of genes in E. coli. (b, c) In these heatmaps, the horizontal and the vertical indicate chromosomal bins of size 100kb each. The intensity of greyness in each cell represents the number of gene pairs - with (b) anti-correlated or (c) correlated gene expression vectors - encoded in the pair of bins represented by it. White indicates low numbers and black high numbers. Below (b), numbers of genes differentially expressed across multiple conditions marked in the figure are shown as a function of genomic coordinate, aligned against the positions indicated by the heatmap above. The origin (Ori) and terminus (Ter) of replication, insC1 and insC5 are marked along the horizontal axis in (b) and (c).

Towards investigating the opposing character of gene expression states between the two orthogonal halves of the chromosome further, we performed a computational meta-analysis of publicly-available gene expression data across ~300 different conditions. Note that these conditions go much beyond the limited set of mutants experimentally interrogated in this work, and thus enable derivation of general principles of gene expression patterns in E. coli. In this analysis, we represented each gene as a vector of gene expression measures across ~300 conditions. We then calculated the Pearson correlation coefficients (PCC; Figure 3.5a) between the gene expression vectors of all pairs of genes, and defined correlated (PCC >= 0.5) and anti-correlated (PCC <= -0.5) gene pairs. In a correlated gene pair, increase (or decrease) in expression of one gene implies a corresponding increase (or decrease) in the expression of the other. On the other hand, increase (or decrease) in expression of a member of an anti-correlated gene pair is associated with a decrease (or increase) in that of the other. In general, most gene pairs are neither correlated nor anti-correlated, i.e. there is no (or at best weak) relationship between the expression vectors of most gene pairs. A small proportion of gene pairs show significant correlation or anti-correlation.

Analysis of anti-correlated gene pairs in the context of their position on the chromosome suggests the presence of two large chromosomal domains: genes localised around the terminus of replication tend to show anti-correlated gene expression vectors to those located on the origin half of the chromosome including the NS-L region (Figure 3.5b). We observe that the boundaries of these two domains are in proximity to insC1 and insC5, the limits of the segmental duplication in ori2, which might indicate selection for the positioning of repetitive elements. Therefore, the opposing gene expression pattern between the terminus and the origin of replication, observed in the mutants studied here, appears to be a general trend observed across a large number of genome-wide gene expression studies. This is in contrast to the chromosomal positioning of co-expressed gene pairs, which are more likely to be present in the same half of the chromosome (Figure 3.5c). However, the mechanisms underlying the persistent opposing gene expression patterns of distinct chromosomal regions – in particular the prospect of chromosome structure influencing these -remain to be
3.5. Discussion

Gene expression in bacteria is affected by a variety of regulators, including but not limited to nucleoid-associated, chromosome-shaping global transcription factors. Among these is the gene silencing system centred around the protein H-NS. H-NS binds to A+T-rich sequence tracts, many of which are horizontally-acquired, and keeps them transcriptionally silent [2]–[4], [9], [30]. We had previously shown, using genome-scale analysis, that the A+T-rich sequences bound by H-NS are intrinsically capable of high gene expression, which, as a cumulative increase in gene expression over ~20% of the genome, could impose a high metabolic cost on the organism. Recent research has further shown that high expression from these loci emerge from pervasive transcription from many promoter-like elements found in A+T-rich sequences [7]. We have also shown that the recruitment of a backup system for H-NS-mediated gene silencing – comprising the H-NS-homolog StpA – is more likely to be diverted to genes with high intrinsic transcription [6]. Therefore, the gene silencing function of H-NS and its partners is directed towards the silencing of highly-transcribable genes. An indirect consequence of the disruption of the H-NS-centred gene silencing mechanism is the down-regulation of transcription from a large number (~15% of all genes) of otherwise highly-expressed genes. Thus, de-silencing horizontally-acquired genes results in a global disruption of the gene expression state of the cell. How does the cell adapt to such a circumstance, short of re-acquiring the silencing system?

The present work has shown that two distinct evolutionary strategies – multiple mutations each resulting in the inactivation of σ38 (RpoS), the σ-factor for general stress response, as well as a duplication of ~40% of the genome centred around the origin of replication – converge in partially redressing the transcriptional imbalance of a strain lacking the H-NS/ rpoS gene silencing system. This suggests a possible role for σ38 in transcription of many H-NS targets. The direct effects of H-NS [37], [38] and σ38 [41] regulate gene expression from the terminus half of the chromosome, but result in an indirect and opposing gene expression effect in the non-structured element on the left half of the chromosome (NS-L). The large chromosomal segment that is amplified in _ori^2_ includes part of NS-L. The direct increase in gene expression of the amplified portion of the chromosome results in an indirect decrease in the expression of H-NS / σ38-regulated genes near the terminus. This presents an intriguing connection between the contrasting direct and indirect effects of two distinct global regulatory systems and chromosome architecture. Meta-analysis of microarray data for ~300 conditions shows the presence of an anti-correlation in expression profiles between genes around the terminus and those around the origin of replication. This analysis indicates that the limits of the segmental duplication described in this study could be the boundary between two opposing gene expression regimes. Given the persistent nature of the opposing gene expression pattern between the origin- and the terminus-half of the chromosome, and the fact that the limits of the two halves are proximal to the duplication-promoting repetitive elements, it is tempting to speculate whether there is
selection for the positioning of such repetitive elements relative to the origin of replication. Finally, our study illustrates the value of laboratory evolution experiments, supported by population and single-clone genome and transcriptome sequencing experiments, for studying adaptation of a bacterium to loss of global gene expression control.

The interplay between chromosome architecture and global gene expression [41], [42] has been proposed to be an analog layer of regulation laid over the digital control imposed by transcription factors such as the Lac repressor [43]. A recent paper has shown that the levels of transcription from the well-studied promoter of the lac operon is dependent on its position on the genome [44]. This interplay between the role of the promoter and that of the larger chromosomal context in gene expression could act at multiple levels, not least replication-dependent copy number gradients [45], DNA supercoiling and the binding of various nucleoid-associated proteins to the DNA, which together impose constraints on the topology of the chromosome [46], [47]. The exact set of factors that establish the persistent gene expression patterns spanning large tracts of the chromosome needs to be established.

Polymorphisms in rpoS are common in both laboratory and environmental/pathogenic isolates of E. coli [48]. Studies in chemostats have also shown that σ38 inactivation leads to shorter doubling times in low nutrient environments, and that such environments select for loss-of-function mutations in rpoS [49]. It has been argued that the idea of a balance between transcription from the housekeeping σ70 and the stress-response σ38 is best suited for shuttling between feast and famine situations [48]. This system does not account for prolonged phase of slow growth, which require significant expression of housekeeping genes, a situation which might be addressed by an inactivation of σ38. Further, survival in prolonged stationary phase also selects for attenuation of σ38 activity [50].

The emergence of large-scale duplications in response to stress and metabolically limiting conditions is well-characterized as a major source of genome plasticity in yeast evolution [27], [51]–[53]. The major genetic innovations in bacteria are believed to originate from horizontal gene transfer. However, growth restrictions do result in large segmental duplications in bacteria as well, for example by unequal recombination at repetitive elements such as transposons [26]. In many genomes, transient amplifications mediated by repetitive rRNA loci is common [54]. Further, duplication of large segments of the chromosome can be selected in low nutrient environments, as shown by seminal studies [55], [56]. Exposing bacteria to antibiotics targeting DNA replication results in an increase in dosage of genes located close to the origin of replication [57]; note however that the scale of this event is significantly smaller than the amplification of ~40% of the chromosome that we report here. One would expect that amplification of genes around the origin of replication will result in an increase in dosage of many essential and growth-associated genes, while decreasing the relative expression of stress-responsive and horizontally-acquired genes [46]. Though these events are probably transient responses to certain stresses, that large duplications could be stable and define lineages is probably under-
appreciated, though indicated by comparative genomics [58]. Certain lineages of *Mycobacterium tuberculosis* carry duplications of ~350 kb [59]; this observation of a stable link between a large structural variation and the evolution of *M. tuberculosis* is particularly stark as this is a species that evolves predominantly by point-mutations and deletions. Laboratory evolution (for only 100 generations) of an *E. coli* strain under glucose limitation within chemostats yielded an evolved lineage carrying an ~180 kb duplication of the 46' region of the *E. coli* chromosome [60].

The segmental duplication observed here would result in a chromosome with two origins of replication. What are the consequences of such a mutation to DNA replication. Wang and colleagues [61] studied the properties of an artificially-constructed *E. coli* cell with two origins of replication, separated from each other by 1 Mb. They observed that the two origins fired synchronously, and replication progressed. Termination of replication from the newly-introduced origin did not occur at a diametrically-opposite position, but at the wildtype *ter* site. These did not result in any apparent defect in growth or morphology in rich or minimal media, indicating that the bacterium can tolerate multiple origins of replication.

Is there a selective force that underlies selection for RpoS polymorphisms as well as large amplifications? The above-described literature survey suggests that growth restriction under nutrient starvation can select for both RpoS polymorphisms and transient (and occasionally more stable) large duplications. Preliminary experiments performed by us do suggest that the Δ*hns*-stp*A culture might in fact be experiencing a 'low-nutrient' state (Annexure-II Figure 12); whether this is the ultimate selective force behind the emergence of the two mutations remains to be tested.

Nevertheless, the brute-force approach of knocking-out the general stress response – thus affecting the expression of a large number of genes – may not necessarily be wise, and large amplifications are unstable. In line with this, these variations exist transiently [27], as we do not see evidence for these in either of the two HS250 populations, or in the four HS250 clones picked for sequencing (Annexure-II Figure 2). For example, the HS250 populations harbour mutations that might affect the acid stress response regulon of GadE [62], or the anaerobic-metabolic targets of AppY [63], both of which are influenced by H-NS and StpA. The HS250 clones also carry mutations in RecC, which is involved in recombination, and MutL, which acts in the mismatch repair pathway. These complement the previously reported suppression of the growth defect of Δ*hns*-stp*A by over-expression of the global transcription factor CRP [8]. Further examination of the roles, if any, of these mutations in suppressing the growth defect of Δ*hns*-stp*A is beyond the scope of this work. These specific affects confer a selective advantage over an en-masse inactivation of the σ38 regulon or unstable large amplifications. However, we suggest that the early increase in growth rates, as a result of two easily accessible mutational strategies – the global effects of the large chromosomal amplification (promoted easily by repetitive elements) and σ38 inactivation (a highly mutable locus) - might serve to increase the substrate pool for finer-level selection to
3.6. References

