LIST OF ABBREVIATIONS

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO_2</td>
<td>Carbon Dioxide</td>
</tr>
<tr>
<td>GGBFS</td>
<td>Ground Granulated Blast Furnace Slag</td>
</tr>
<tr>
<td>HSC</td>
<td>High Strength Concrete</td>
</tr>
<tr>
<td>HPC</td>
<td>High Performance Concrete</td>
</tr>
<tr>
<td>IAPST</td>
<td>Index Of Aggregate Particle Shape And Texture</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Standard Testing Methods</td>
</tr>
<tr>
<td>IS</td>
<td>Indian Standard</td>
</tr>
<tr>
<td>AASHTO</td>
<td>American Association of State Highway and Transportation Officials</td>
</tr>
<tr>
<td>L</td>
<td>Length</td>
</tr>
<tr>
<td>W</td>
<td>Width</td>
</tr>
<tr>
<td>T</td>
<td>Thickness</td>
</tr>
<tr>
<td>H</td>
<td>Height</td>
</tr>
<tr>
<td>E</td>
<td>Elongation Index</td>
</tr>
<tr>
<td>F</td>
<td>Flakiness Index</td>
</tr>
<tr>
<td>DIP</td>
<td>Digital Image Processing</td>
</tr>
<tr>
<td>DOE</td>
<td>Department Of Environment Method</td>
</tr>
<tr>
<td>ACI</td>
<td>American Concrete Institute</td>
</tr>
<tr>
<td>LPDM</td>
<td>Linear Packing Density Model</td>
</tr>
<tr>
<td>LMPM</td>
<td>Linear Mixture Packing Model</td>
</tr>
<tr>
<td>f'_{cr}</td>
<td>(Target) Average Compressive Strength</td>
</tr>
</tbody>
</table>
\(k \) Empirical Factor
\(f'_c \) Design Compressive Strength
W/C Water Cement Ratio
NMSA Nominal maximum size of aggregate
\(F_{\text{agg}} \) Fine Aggregate
HRWR High Range Water reducer
\(d \) Particle Diameter Being Considered [M]
\(d_{\text{max}} \) Maximum Particle Diameter In The Mixture
\(P(d) \) Size Cumulative Distribution Function
\(q \) \(Q \) Parameter (0.33-0.5) Which Adjusts The Curve For Fineness Or Coarseness
\(d_0 \) The Minimum Particle Size Of Distribution
\(d_1/d_2 \) Ratios of Fine to Coarse Particle
D The Maximum Particle Size
AFDZ Andreassen, Funk, Dinger and Zheng
EMMA Elekem materials mixture analyseri
TPM Theory Of Particle Mixture
\(\eta_r \) Relative Viscosity
\(\phi \) Volume Fraction Of The Suspended Spheres
\(k \) Constant
\(\lambda_{ij} \) A Variable Factor
LPDM Linear Packing Density Model
\(\beta \) The maximum packing density achievable with a given mixture, by keeping each
particle in its original shape and placed one by one of a mixture

\[d_f \] Size of Finer Particle

\[d_c \] Size of Coarser Particle

SSM Solid Suspension Model

CPM Compressive Packing Model

MLPM Modified Linear Packing Model

\[r \] Size Ratio between the Components

\[j \] Evaluated as the ratio of the size of the smaller size component to the size of the larger size component

\[L(r) \] and \[w(r) \] Interaction functions accounting for loosening and wall effects as per Yu

\[EL(r) \] and \[Ew(r) \] Interaction functions accounting for loosening and wall effects as per proposed Theory

OPC Ordinary Portland Cement

CSF Condensed Silica Fume

C Cement

SF Silica Fume

w/p Water to Powder Ratio

g Yield Value

NSC Normal Strength Concrete

HCS Highest Compressive Strength

DEM Discrete Element Modelling

SP Super Plasticiser
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IAPST</td>
<td>Index Of Aggregate Particle Shape And Texture</td>
</tr>
<tr>
<td>Sphericity</td>
<td>Sphericity</td>
</tr>
<tr>
<td>Si</td>
<td>Angularity Index</td>
</tr>
<tr>
<td>DIP</td>
<td>Digital Image Processing</td>
</tr>
<tr>
<td>VDG</td>
<td>Video Grader</td>
</tr>
<tr>
<td>SCAR</td>
<td>Shape Class Average Ratio</td>
</tr>
<tr>
<td>FF</td>
<td>Form Factor</td>
</tr>
<tr>
<td>LASS</td>
<td>Laser-Based Aggregate Scanning System</td>
</tr>
<tr>
<td>ITZ</td>
<td>Interfacial Transition Zone</td>
</tr>
<tr>
<td>LPT</td>
<td>Local Porosity Theory</td>
</tr>
<tr>
<td>AI</td>
<td>Angularity Index</td>
</tr>
<tr>
<td>ST</td>
<td>Surface Texture</td>
</tr>
<tr>
<td>F and E</td>
<td>Flat and Elongated Ratio</td>
</tr>
<tr>
<td>DIPAM</td>
<td>Digital Image Processing Based Aggregate Measurement System</td>
</tr>
<tr>
<td>LED</td>
<td>Light Emitting Diode</td>
</tr>
<tr>
<td>PWM</td>
<td>Pulse Width Modulation</td>
</tr>
<tr>
<td>CPM</td>
<td>Compressible Packing Model</td>
</tr>
<tr>
<td>OPC</td>
<td>Ordinary Portland Cement</td>
</tr>
</tbody>
</table>

r Ratio of Equivalent Packing Diameter of Fine Aggregate

d_p Equivalent packing diameter

d_{pi} Equivalent Packing Diameter of Coarse Aggregate

d_{pj} Equivalent Packing Diameter of Fine Aggregate
\(a_{ij} \) Loosening Effect by De Larrard

\(b_{ij} \) Wall Effect by De Larrard

\(\lambda \) A parameter dependent on the flakiness of the aggregate

\(K \) Compaction Index

\(k_w \) Constant of Angularity

CA/FA Coarse Aggregates to Fine Aggregates Ratio

ST Surface Texture Parameter For Each Image

\(L \) Longest Or Maximum Intercept Of A Particle In Image

\(\beta \) Scaling Factor For Erosion And Dilation Operations.

\(A_1 \) and \(A_2 \) Areas of the objects before and after applying the erosion - dilation operations, respectively

SCAR Shape Class Average Ratio

SPACE Software Package for the Assessment of Compositional Evolution

DFXTRACT A Program

SP Surface Parameter

FF Form factor

\(R \) Radius of the particle in different directions

\(\theta \) Directional Angle

\(R_{p\theta} \) Radius of the particle at a directional angle \(\theta \)

\(R_{EE\theta} \) Radius of an Equivalent ellipse at a directional angle \(\theta \)