Chapter 2

DOMINATING SETS IN
BIPARTITE GRAPHS

Given a graph G, there are many ways to construct bipartite graphs using the vertex set and edge set of G. Some of the ways are described in the previous chapter. The problem of determining which bipartite graphs are realizable as VE graph or EV graph or VV graph of some graph is equally interesting. This problem is discussed in the first section of this chapter. Results on X-domination, Y-domination, X-irredundant and strong non-split domination are also studied in this chapter.
2.1 Introduction

In the bipartite theory of graphs developed in [18, 19], many equivalent formulations of the concepts in graphs were suggested for bipartite graphs. Some of them are X-domination, Y-domination, X-independence and hyper independence, etc. This chapter is devoted to a detailed study of these new notions in bipartite graphs. The concept of X-irredundant set is introduced and studied in this chapter. Strong non-split domination in graphs is extended to bipartite graphs as strong nonsplit X-domination. X-vertex critical graphs are also studied.

2.2 Realization of a bipartite graph as VE, EV and VV of a graph

Definition 2.2.1. Let G be a bipartite graph. G is said to be a vertex edge bipartite realizable graph (VE-realizable graph) if $G = VE(H)$ for some graph H.

Remark 2.2.2. If $G = C_4$ and $G = VE(H)$, then H is a multigraph.

Proposition 2.2.3. A bipartite graph $G \neq C_4$, $G = (X, Y)$ is a VE realizable graph if and only if every vertex of Y is of degree 2.
Proof: Let G be a bipartite graph. Let $G \neq C_4$ and every vertex in Y is of degree 2. Consider the graph H with $V(H) = X$ and $E(H) = \{uv : v, u \in X, u$ and v are $X-$adjacent $\}$. Since $G \neq C_4$, H is a simple graph. Since every vertex in Y is of degree 2, every vertex in Y corresponds to an edge in H. It can be easily verified that $G = VE(H)$.

Conversely, Suppose $G = VE(H)$, where H is a simple graph. Any edge in H is incident with two vertices of H. Therefore, every vertex $y \in Y$ of G is of degree 2.

Definition 2.2.4. Let G be a bipartite graph. G is said to be edge vertex bipartite realizable graph (EV realizable graph) if $G = EV(H)$ for some graph H.

Proposition 2.2.5. A bipartite graph $G \neq C_4$, $G = (X,Y)$ is a EV realizable graph if and only if every vertex of X is of degree 2.

Proof: Let G be a bipartite graph. Let $G \neq C_4$ and every vertex in X is of degree 2. Consider the graph H with $V(H) = Y$ and $E(H) = \{uv : v, u \in Y, u$ and v are adjacent to a vertex of $X \}$. Since $G \neq C_4$, H is a simple graph. Since every vertex in X is of degree 2, every vertex in X corresponds to an edge in H. It can be easily verified that $G = EV(H)$.

14
Conversely, suppose $G = EV(H)$. Then H is a simple graph. Any edge in H is incident with two vertices of H. Therefore, every vertex $x \in X$ of bipartite graph G is 2.

Definition 2.2.6. Let G be a bipartite graph. G is said to be Vertex-vertex bipartite realizable graph (VV realizable graph) if $G = VV(H)$ for some graph H.

Theorem 2.2.7. [12] A graph G is VV realizable if and only if the following conditions are true.

1. G has an even number of vertices (and edges if we want G to be duplicate of a graph without loops).

2. G has no odd cycles.

3. Let G be connected. If G contains a cycle $C_{2n} : a_1a_2 \cdots a_{2n}a_1$ where $n > 1$ is odd then G should be symmetrical about this cycle in the sense that if there is a branch at a point $a_k(k \leq n)$ of the cycle, then there should be an isomorphic branch (not necessarily distinct) at the point a_{n+k} of the cycle. Further, if these branches are one and the same then this branch should be the VV-graph of some graph.

In other cases (that is, when G has only cycles of the form C_{2n} where n is even or when G is a tree) it should be possible in G to remove a number of lines each joining two similar points such that the removal of these edges results in two isomorphic components of G.

15
4. If G is disconnected, then the number of components of G which are not of the types mentioned as above should be even and these should be in isomorphic pairs.

2.3 X-Dominating set and Y-Dominating set

Definition 2.3.1. [18] A Subset D of X is an X-dominating set if every vertex in $X - D$ is X-adjacent to at least one vertex in D.

Definition 2.3.2.

Let $x \in X$. $N_Y(x) = \{u \in X \mid x \text{ and } u \text{ are } X\text{-adjacent}\}$. Elements in the set $N_Y(x)$ are called X-neighbors of $x \in X$. Let $S \subseteq X$ and $N_Y(S) = \bigcup N_Y(x)$ where $x \in S$.

The following are equivalent definitions:

A subset $S \subseteq X$ is a X-dominating set if and only if

1. for every $x \in X - S$, there exists $u \in S$ and $y \in Y$ such that x and u are adjacent to $y \in Y$.

2. for every $x \in X - S$, $d(x, S) = 2$, where $d(x, S) = \min\{d(x, u) : v \in S\}$.

16
4. for every \(x \in X - S \), \(|N_Y(x) \cap S| \geq 1 \).

5. for every \(x \in X \), \(|N_Y[x] \cap S| \geq 1 \).

Remark 2.3.3. Any superset of a \(X \)-dominating set is a \(X \)-dominating set.

Definition 2.3.4. [18] A \(X \)-dominating set \(S \) is a minimal \(X \)-dominating set if no proper subset of \(S \) is \(X \)-dominating set. The minimum cardinality of a minimal \(X \)-dominating set is called the \(X \)-domination number of \(G \) and is denoted by \(\gamma_X(G) \). The maximum cardinality of a minimal \(X \)-dominating set of \(G \) is called upper \(X \)-domination number and is denoted by \(\Gamma_X(G) \).

Definition 2.3.5. Let \(S \subseteq X \) and let \(u \in S \). \(v \in X - S \) is called a \(Y \)-private neighbor of \(u \) with respect to \(S \) if \(u \) is the only point in \(S \) such that \(u \) and \(v \) have common adjacent point in \(Y \).

Definition 2.3.6. Let \(S \subseteq X \). Let \(u \in S \). \(u \) is called an \(Y \)-isolate of \(S \) if there exists no adjacent vertex \(v \in S - \{u\} \) such that \(u \) and \(v \) have a common point in \(Y \).

Theorem 2.3.7. A subset \(S \subseteq X \) is a minimal \(X \)-dominating set if and only if for every \(u \in S \) one of the following conditions is satisfied:

(i) \(u \) is an \(Y \)-isolate of \(S \).

(ii) there exists a \(v \in X - S \) such that \(v \) is a \(Y \)-private neighbor of \(u \) with respect to \(S \).

Proof: Let \(S \) be a minimal \(X \)-dominating set of \(G \) and let \(u \in S \). Then \(S - \{u\} \) is not a \(X \)-dominating set. Hence, some vertex \(v \) in \(X - (S - \{u\}) \) is
not X-adjacent to any vertex in $S - \{u\}$. Then either $v = u$ in which case u is Y-isolate of S which is condition (i) or $v \in X - S$ and v is not X-adjacent to any vertex of $X - (S - \{u\})$. That is v is a Y-private neighbor of u which is (ii).

Let us assume that S is not a minimal X-dominating set. There exists a vertex $u \in S$ such that $S - \{u\}$ is a X-dominating set. Hence u is X-adjacent to at least one vertex in $S - \{u\}$, and so condition (i) does not hold for S. Also every vertex in $X - S$ is X-adjacent to at least one vertex in $S - \{u\}$, and so condition (ii) does not hold for u. Thus S does not satisfy (i) and (ii).

Remark 2.3.8. Complement of a X-dominating set need not be a X-dominating set.

For, in the following example, the set $S = \{b, c, d\}$ is a X-dominating set but the complement of S is not a X-dominating set.
Theorem 2.3.9. Let G be a bipartite graph with $N_Y(x) \neq \phi$ for every $x \in X$. Then the complement $X - S$ of every minimal X-dominating set of G is a X-dominating set of G.

Proof: Let S be a minimal X-dominating set of G. Assume that $u \in S$ is not X-adjacent to any vertex in $X - S$. By hypothesis, $N_Y(x) \neq \phi$ for every $x \in X$. Therefore, u must be X-adjacent to at least one vertex in $S - \{u\}$. Thus, $S - \{u\}$ is a X-dominating set contradicting the minimality of S. Thus every vertex in S is X-dominated by at least one vertex in $X - S$ and hence $X - S$ is a X-dominating set. ■

Corollary 2.3.10. Let S be a minimal X-dominating set. $(X - S) \cup D$ where $D = \{x \in S/N_Y(x) = \phi\}$ is a X-dominating set.

X-domination number of certain standard graphs

Proposition 2.3.11. Let G be a graph with $N_Y(x) \neq \phi$ for every $x \in X$. If there exists a vertex $y \in Y$ of degree p then $\gamma_X(G) = 1$.

Proof: Let $y \in Y$ be a vertex of degree p. Then y is adjacent to every vertex of X. Every vertex in X is X-adjacent to all other vertices of X. Therefore $\gamma_X(G) = 1$. ■

Corollary 2.3.12. $\gamma_X(K_{m,n}) = 1$.
Proposition 2.3.13. The X-domination number of \(C_{6k} \) is \(k \).

Proof: Let the vertices of \(G \) be \(x_1, x_2, \ldots, x_{6k} \). Let \(X = \{x_1, x_3, \ldots, x_{6k-1}\} \); \(Y = \{x_2, x_4, \ldots, x_{6k}\} \). Edges are \(e_i = x_ix_{i+1} \) and \(e_0 = x_{6k}x_1 \). The graph \(H \) is obtained from \(G \) by taking \(V(H) = X \) and two vertices of \(H \) are adjacent if and only if they are \(X \)-adjacent in \(G \). Then \(\gamma_X(G) = \gamma(H) = k \) since \(H \) is a cycle on \(3k \) vertices. Therefore we get \(\gamma_X(C_{6k}) = k \). \(\blacksquare \)

Proposition 2.3.14. \(\gamma_X(C_l) = \lceil l/6 \rceil \) for every \(l \geq 4, l \equiv 0, 2, 4(\text{mod} 6) \).

Proof: Routine.

Bounds on X-domination number

Let \(d_Y(x) \) denote the number of vertices \(X \)-adjacent to \(x \in X \). Let \(\Delta_Y \) denote \(\max \{d_Y(x) / x \in X\} \).

Proposition 2.3.15. Let \(G \) be a bipartite graph with \(p \) vertices and \(q \) edges. Then \(p - q + 1 \leq \gamma_X \leq p - \Delta_Y \).

Proof: Let \(S \) be a \(X \)-dominating set with \(\gamma_X \) vertices. Therefore, \(|X - S| = p - \gamma_X \). Then there are at least \(p - \gamma_X + 1 \) edges from \(X - S \) to \(S \). Hence \(p - \gamma_X + 1 \leq q \). Therefore, \(p - q + 1 \leq \gamma_X \).

Let \(x \in X \) be a vertex such that \(d_Y(x) = \Delta_Y \). Clearly \(X - N_Y(x) \) is a \(X \)-dominating set and therefore, \(\gamma_X \leq p - \Delta_Y \). Therefore, \(p - q + 1 \leq \gamma_X \leq p - \Delta_Y \). \(\blacksquare \)
Proposition 2.3.16. Let G be a graph with $N_Y(x) \neq \phi$ for every $x \in X$. Then $\gamma_X \leq |X|/2$.

Proof: Let S be a γ_X set of G. Then $X - S$ is a X-dominating set. Therefore,

$$\gamma_X \leq |X - S| \leq |X| - \gamma_X \Rightarrow \gamma_X \leq |X|/2.$$

Proposition 2.3.17. Let G be a graph with $N_Y(x) \neq \phi$ for every $x \in X$. Then $[p/(\Delta_Y + 1)] \leq \gamma_X \leq p - \beta_X$.

Proof: Let S be a maximum X-independent set of G. Then every vertex in S is X-adjacent to some vertex in $X - S$, since $N_Y(x) \neq \phi$ for every $x \in X$. Hence, $X - S$ is a X-dominating set with cardinality $p - \beta_X$. Therefore,

$$\gamma_X \leq p - \beta_X.$$

Let S be a X-dominating set of cardinality γ_X and let $S = \{v_1, v_2, \ldots v_{\gamma_X}\}$. Since every vertex in $X - S$ is X-adjacent to some vertex in S, we have

$$|X - S| \leq \sum_{i=1}^{\gamma_X} d_Y(v_i) \leq \gamma_X \Delta_Y.$$

Hence, $p - \gamma_X \leq \gamma_X \Delta_Y$. That is, $p \leq (\Delta_Y + 1)\gamma_X$, which implies $[p/(\Delta_Y + 1)] \leq \gamma_X$. Thus, $[p/(\Delta_Y + 1)] \leq \gamma_X \leq p - \beta_X$.

Proposition 2.3.18. [11] In a bipartite graph, every maximal X-independent set is a minimal X-dominating set.

Definition 2.3.19. A subset S of X which is X-independent and X-dominating is called X-independent X-dominating set.
The existence of such a set is guaranteed by the above proposition.

Definition 2.3.20. A X-independent, X-dominating set of minimum cardinality is called X-independent, X-domination number of a graph G and is denoted by $i_X(G)$.

Clearly $i_X(G) \leq \beta_X(G)$. Thus we have $\gamma_X(G) \leq i_X(G) \leq \beta_X(G) \leq \Gamma_X(G)$.

Hyper X-independent set

Definition 2.3.21. Let G be a bipartite graph. A subset S of X is hyper X-independent if $N_Y(x) \subseteq S$ for every $x \in S$. The maximum cardinality of a hyper X-independent set is denoted by $\beta_{hX}(G)$.

Proposition 2.3.22. In a bipartite graph, every hyper independent set is hyper X-independent.

Proof: Let S be a hyper independent set of G. Suppose S is not hyper X-independent set. Then there exists $x \in S$ such that $N_Y(x) \subseteq S$. Let $y \in N(x)$. Let $z \in N(y)$. If $z = x$ then $z \in S$. If $z \neq x$, then $z \in N_Y(x) \subseteq S$. Therefore, $N(y) \subseteq S$, a contradiction.

Since S is a hyper independent set.

Remark 2.3.23. The converse of the above need not be true.

$S = \{a, d\}$ is hyper X-independent set but not a hyper independent set since $N(e) \subseteq S$.

22
Remark 2.3.24. $\beta_X(G) \leq \beta_h(G) \leq \beta_{hX}(G)$.

Y-dominating set

Definition 2.3.25. Let $G = (X, Y, E)$ be a bipartite graph. A subset $S \subseteq X$ which dominates all vertices in Y is called a Y-dominating set of G. The Y-domination number denoted by $\gamma_Y(G)$ is the minimum cardinality of a Y-dominating set of G.

Proposition 2.3.26. Let G have no isolates. Every Y-dominating set is a X-dominating set.

Proof: Let $S \subseteq X$ be a Y-dominating set. The set of vertices in S are adjacent to vertices of Y. Let $x \in X - S$. There exists an edge incident with $x \in X - S$ and $y \in Y$. Since $y \in Y$ is adjacent to a vertex in S. S is an X-dominating set. \qed

Remark 2.3.27. An X-dominating set need not be a Y-dominating set. Consider the graph G, $\{b\}$ is a X-dominating set but not a Y-dominating set.
Remark 2.3.28. \(\gamma_X(G) \leq \gamma_Y(G) \leq \gamma(G) \).

Gallai type Theorem

Theorem 2.3.29. Let \(G \) be a bipartite graph. A subset \(D \) of \(X \) is \(Y \)-dominating set if and only if \(X - D \) is hyper independent set of \(G \).

Proof: Let \(D \subseteq X \) be a \(Y \)-dominating set of \(G \). Every vertex of \(Y \) is adjacent to atleast one vertex in \(D \). Clearly, \(N(y) \) is not contained in \(X - D \) for every \(y \in Y \). Therefore, \(X - D \) is hyper independent set.

Conversely, let \(D \) be a hyper independent set. \(N(y) \) is not contained in \(D \) for every \(y \in Y \). Hence, every \(y \in Y \) is adjacent to at least one vertex of \(X - D \). Hence, \(X - D \) is a \(Y \)-dominating set of \(G \). \(\blacksquare \).

Corollary 2.3.30. Let \(G \) be a bipartite graph with \(|X| = p \) then \(\gamma_Y(G) + \beta_h(G) = p \).

Proof: Let \(S \) be a \(Y \)-dominating set. Then \(X - S \) is hyper independent set.

\(\beta_h \geq p - \gamma_Y \Rightarrow \beta_h + \gamma_Y \geq p \).
Conversely, let S be a maximum hyper independent set. Then $X - S$ is a Y-dominating set. Therefore, $\gamma_Y(G) \leq p - \beta_h(G) \Rightarrow \gamma_Y(G) + \beta_h(G) \leq p$.

Hence, $\gamma_Y(G) + \beta_h(G) = p$. \blacksquare

Theorem 2.3.31. For any graph G, $\gamma(G) = \gamma_t(G)$ if and only if there exists a γ set S in G such that $V - S$ is hyper independent set in the graph $VV(G)$.

Proof: Let S be a γ set of G such that $V - S$ is hyper independent set in graph $VV(G)$. Then S is a Y-dominating set in graph $VV(G)$. In G, every vertex is adjacent to a vertex of S. Hence, S is a total dominating set. Thus, $\gamma_t(G) \leq |S| = \gamma(G)$. $\gamma(G) \leq \gamma_t(G)$. Therefore, $\gamma_t(G) = \gamma(G)$.

Conversely, assume $\gamma(G) = \gamma_t(G)$. Let S be a $\gamma_t(G)$-set in G. Then S is a Y-dominating set in graph $VV(G)$. Therefore, $V - S$ is hyper independent set in the graph $VV(G)$. Therefore, we have a γ set S in G such that $V - S$ is hyper independent set in $VV(G)$. \blacksquare

Proposition 2.3.32. For any graph G, every total dominating set in G is a dominating set in the graph G_2.

Proof: Let S be a total dominating set in G. Let $x \in V - S$. Then there exists $u \in S$ such that x and u are adjacent in G. Since S is a total dominating set in G, there exists $v \in S$ such that u and v are adjacent in
G. Hence, in $G2$, v and x are adjacent. Therefore, S is a dominating set in graph $G2$.

Theorem 2.3.33. For any graph G, $\gamma(G2) = \gamma_1(G)$ if and only if there exists a $\gamma(G2)$ set S such that $V - S$ is hyper independent set in graph $V(V(G))$.

Theorem 2.3.34. For any graph G, $\gamma_1(G) = \alpha_1(G)$ if and only if there exists a γ_1 set S such that $E - S$ is hyper independent set in the graph $E(V(G))$.

Proof: Let S be a γ_1 set of G such that $E - S$ is hyper independent set in the graph $E(V(G))$. Then S is a Y-dominating set in graph $E(V(G))$. In G, that is S is a set of edges which cover all vertices in G. Therefore, S is an edge covering set. Hence, $\alpha_1 \leq |S| = \gamma_1(G)$. But $\gamma_1(G) \leq \alpha_1(G)$. Therefore, $\gamma_1(G) = \alpha_1(G)$.

Conversely, let $\gamma_1(G) = \alpha_1(G)$. Let S be a α_1 set of G. Then S is a Y-dominating set in graph $E(V(G))$. Then $E - S$ is hyper independent set of $E(V(G))$ and every edge covering set is an edge dominating set. Therefore, there exists an edge dominating set S such that $E - S$ is hyper independent set in the graph $E(V(G))$.

Proposition 2.3.35. For any graph G, let $S \subseteq X(G)$ be a distance 2-dominating set of the subdivision graph of G. Then S is a dominating set of G.

26
Proof: Let $S = \{u_1, u_2, \ldots, u_r\} \subseteq V(G)$ be a distance 2-dominating set of $S(G)$. Let $e_i \in E(G)$ and let $e_i = xy$. Suppose $x, y \notin S$. Then the subdivided vertex x^1 of xy cannot be distance 2-dominated by S. Therefore, x or $y \in S$. That is, S is a Y-dominating set of the graph $VE(G)$. Therefore, every edge in G is incident with at least one vertex of S. Hence, in G every vertex of $V - S$ is adjacent to at least one vertex of S. Hence, S is a dominating set of G.

Corollary 2.3.36. For any graph G, $\gamma(G) \leq \gamma_2(S(G))$.

Proof: Let S be a minimum distance 2-dominating set of $S(G)$ such that $S \subseteq V(G)$. Then S is a dominating set of G.

Proposition 2.3.37. Any Y-dominating set of $VE(G)$ is a distance 2-dominating set of $S(G)$ contained in $V(G)$ and conversely.

Proof: Let S be a Y-dominating set of $VE(G)$. Then $S \subseteq V(G)$. If $S = V(G)$, then clearly, S is a dominating set of $S(G)$ and hence a distance 2-dominating set of $S(G)$. Let $S \subseteq V(G)$. Let $x \in V(G) - S$. Let $e = xy$. Since S is a Y-dominating set of $VE(G)$, $y \in S$. Therefore, in $S(G)$, $d(x, y) = 2$. Hence $y \in S$ distance 2-dominates x. Let $w^1 \in V(S(G))$ where w^1 is the subdivided vertex of an edge $e = uv$. Since, S is a Y-dominating set of
G, u or $v \in S$. Therefore, S dominates W^1. Therefore, S is a distance 2-dominating set of $S(G)$.

Conversely, let $e = uv \in E(G)$. Suppose $u, v \notin T$. Let u^1 be the subdivided vertex of uv, there exists $x \in T$ such that $d(x, u^1) \leq 2$. Since $x \in V(G)$, $d(x, u^1) = 1$. Therefore, $x = u$ or v, a contradiction. Therefore, u or $v \in T$. Therefore, T is a Y-dominating set of $VE(G)$.

Theorem 2.3.38. For any graph G, $\gamma_2(G) = \gamma(G)$ if and only if there exists a γ_2 set S in G such that $V - S$ is hyper independent set in graph $VV^+(G)$

Proof: Let S be a γ_2 set in G such that $V - S$ is hyper independent set in the graph $VV^+(G)$. Then, S is a Y-dominating set in the graph $VV^+(G)$. Therefore, S is a dominating set in G. Therefore, $\gamma(G) \leq |S| = \gamma_2(G)$.

Hence, $\gamma_2(G) = \gamma(G)$.

Conversely, let S be a minimum dominating set in G. Then S is a Y-dominating set in $VV^+(G)$. Hence, $V - S$ is a hyper independent set in $VV^+(G)$. But every γ set of G is a γ_2 set of G.

Therefore, there exists a γ_2 set S of G such that $V - S$ is hyper independent set in the graph $VV^+(G)$.

Theorem 2.3.39. Let G be a bipartite graph. A subset D of X is X-
dominating set if and only if $X - D$ is hyper X-independent set.

Proof: Let D be a X-dominating set. For every $x \in X - D$, there exists x_1 in D such that x and x_1 are X-adjacent. Hence, $N_Y(x)$ is not a subset of $X - D$ for every $x \in X - D$. Therefore, $X - D$ is a hyper X-independent set.

Conversely, let S be a hyper X-independent set. Then $N_Y(x)$ is not a subset of S for every $x \in S$. Equivalently for every $x \in S$, there exists x_1 in $X - S$ such that x and x_1 are X-adjacent. Hence, $X - S$ is a X-dominating set.

Corollary 2.3.40. Let G be a bipartite graph with $|X| = p$. Then $\gamma_X(G) + \beta_{hX}(G) = p$.

Proof: Let D be a γ_X set of G. Then $X - D$ is hyper X-independent set. Therefore, $\beta_{hX} \geq p - \gamma_X \Rightarrow \gamma_X + \beta_{hX} \geq p$.

Conversely, if S is a β_{hX} set of G, then $X - S$ is a X-dominating set. Therefore, $\gamma_X \leq p - \beta_{hX} \Rightarrow \gamma_X + \beta_{hX} \leq p$. Hence, $\gamma_X + \beta_{hX} = p$.

Proposition 2.3.41. For any graph G, every dominating set in graph G^2 is a dominating set in G^2.

Proof: Let S be a dominating set of G^2. For every $x \in V - S$, there exists $y \in S$ such that x and y are adjacent in G^2. Therefore, in G, x and y have
a common vertex. Thus, \(d(x, S) \leq 2 \) for every \(x \in V - S \) in \(G \). Hence, \(S \) is a dominating set in \(G^2 \).

Corollary 2.3.42. \(\gamma(G^2) \leq \gamma(G2) \).

Theorem 2.3.43. For any graph \(G \), \(\gamma(G^2) = \gamma(G2) \) if and only if there exists a \(\gamma(G^2) \) set \(S \) such that \(V - S \) is hyper \(X \)-independent set in \(VV(G) \).

Proof: Let \(S \) be a \(\gamma(G^2) \) set such that \(V - S \) is a hyper \(X \)-independent set of \(VV(G) \). Then \(S \) is a \(X \)-dominating set in \(VV(G) \). Let \(X,Y \) be the bipartition of \(VV(G) \). For every \(x \in X - S \), there exists \(u \in S \) such that \(x \) and \(u \) are \(X \)-adjacent. In \(G \), \(x \) and \(u \) are incident at a common vertex. Hence, in \(G2 \), \(x \) and \(u \) are adjacent. Therefore, for every \(x \in V - S \) there exists \(u \in S \) such that \(x \) and \(u \) are adjacent. Thus, \(S \) is a dominating set in \(G2 \). Therefore, \(\gamma(G2) \leq |S| = \gamma(G^2) \). Hence, \(\gamma(G2) = \gamma(G^2) \).

Conversely, let \(S \) be a \(\gamma- \) set of \(G2 \). Then, \(S \) is a \(X \)-dominating set in the graph \(VV(G) \). Therefore, \(V - S \) is hyper \(X \)-independent set. Every dominating set in \(G2 \) is a dominating set in \(G^2 \) and \(\gamma(G2) = \gamma(G^2) \). Hence, there exists a \(\gamma(G^2) \) set \(S \), such that \(V - S \) is hyper \(X \)-independent set in \(VV(G) \).

Remark 2.3.44. For any graph \(G \), every dominating set in graph \(G^2 \) is a
distance 2-dominating set in G.

Theorem 2.3.45. Any dominating set of G^2 is a X-dominating set in $VV^+(G)$ and conversely.

Proof: Let S be a dominating set of G^2. Then, for any $y \in V - S$, there exists $x \in S$ such that $d(x, y) \leq 2$. Therefore, S is a X-dominating set in $VV^+(G)$.

Conversely, let S be a X-dominating set of $VV^+(G)$. Then for any $y \in V - S$, there exists $x \in S$ such that $d(x, y) \leq 2$. Therefore, S is a dominating set of G^2.

Corollary 2.3.46. If S is a dominating set of G^2, then $V - S$ is a hyper X-independent set in $VV^+(G)$ and conversely.

Corollary 2.3.47. $\gamma(G^2) = \beta_{hX}(VV^+(G))$.

Sufficient Conditions of graphs for which $\gamma_X(G) = \frac{\gamma(G)}{2}$

Theorem 2.3.48. Let G be a bipartite graph with $|X| = p; |Y| = q; p \geq q \geq 2$ such that $d(G) = d(G)$. Then $\gamma_X(G) = \frac{\gamma(G)}{2}$.

Proof: Let G be a bipartite graph with $d(G) = d(G)$. If there exists at least one vertex $y \in Y$ of degree p, then $\gamma_X(G) = 1$. Also, by theorem in ??, there
exists a vertex \(x \in X \) which is adjacent to all vertices in \(Y \). Hence, \(\{x, y\} \) forms a minimal dominating set of \(G \). Therefore \(\gamma_X(G) = \frac{\gamma(G)}{2} \).

If such a vertex \(y \in Y \) does not exist then by \(p \leq 2q - 1 \). Let \(M_i = \{x \in X / y_i \text{ does not belong to } N_G(x)\} \) \(1 \leq i \leq q \). Then in the proof of theorem in ?? we obtain the following: \(M_i \neq \phi \) for \(1 \leq i \leq q \) and \(M_i \) are pairwise disjoint subsets of \(X \) and since \(p \leq 2q - 1 \), there exist some \(j \in \{1, 2, 3, \cdots q\} \) such that \(|M_j| = 1 \). Let \(M_j = \{x\} \).

Claim: \(M_j \) is a \(X \)-dominating set.

Let \(x_1 \in X - \{x\} \). By theorem in ??, the degree of \(x_1 \) is at least \(q - 1 \). There exists some \(y_k \in Y, y_k \neq y_j \) such that \(x_1 \) is adjacent to \(y_k \). But \(x \) is adjacent to \(y_k \). Therefore \(\{x\} \) is a \(X \)-dominating set. \(\{x, y_j\} \) forms a dominating set of \(G \). Hence, \(\gamma_X(G) = \gamma(G)/2 \).

Theorem 2.3.49. Let \(G \) be a graph with no isolated vertex, \(|X| = p; |Y| = 2 \) and \(p \geq 2 \). If \(d_i(G) = d_i(G) \) then \(\gamma_X(G) = \frac{\gamma(G)}{2} \).

Proof: By theorem in ??, there exists exactly one vertex \(y_1 \) of degree \(p \). Hence, \(\gamma_X(G) = 1 \). Let \(y_2 \in Y \). Since \(y_2 \) is not isolated, there exists \(x \in X \) such that \(x \) and \(y_2 \) are adjacent. \(x \) is already adjacent to \(y_1 \). Therefore \(\gamma_Y(G) = 1 \). Hence, \(\gamma_X(G) = \gamma_Y(G) = 1 \).
\{y_1, y_2\} forms a minimum dominating set of \(G \). Therefore \(\gamma_X(G) = \gamma(G)/2 \).

Characterization of graphs for which \(\gamma_X(G) = \gamma_Y(G) \)

Proposition 2.3.50. Let \(G \) be a graph with no isolated vertex and let \(|X| = p; |Y| = q \). Suppose \(X \) has a vertex of degree \(q \). Then \(\gamma_X(G) = \gamma_Y(G) \).

Proof: Let \(x \in X \) be a vertex of degree \(q \). Then \(\gamma_Y(G) = 1 \). Since the vertices are not isolated, there is an edge between \(x_1 \in X - \{x\} \) and \(y_1 \in Y \). Already \(xy_1 \in E \). Hence, \(\{x\} \) is a \(X \)-dominating set. Therefore \(\gamma_X(G) = 1 \).

Hence, \(\gamma_X(D = \gamma_Y(G) \).

Proposition 2.3.51. Let \(G \) be a bipartite graph without isolated vertex with \(d(G) = d(\bar{G}) \) then \(\gamma_X(G) = \gamma_Y(G) \).

Proof: Let \(G \) be a bipartite graph with \(d(G) = d(\bar{G}) \). Using [1], number of vertices of \(X \) of degree \(q \) \(\geq \) number of vertices of \(Y \) of degree \(p \). Hence, \(\gamma_X(G) = \gamma_Y(G) \).

Proposition 2.3.52. If \(G \) is a graph without isolated vertices with \(|X| = p; |Y| = 2 \) such that \(d_L(G) = d_l(\bar{G}) \) then \(\gamma_X(G) = \gamma_Y(G) \).

Proof: Let \(G \) be a graph with \(d_L(G) = d_l(\bar{G}) \). [1] there exists a vertex of \(Y \) of degree \(p \). Therefore, \(\gamma_X(G) = \gamma_Y(G) \).
Theorem 2.3.53. Let $G = (X, Y, E)$ be a bipartite graph. $\gamma_X(G) = \gamma_Y(G)$ if and only if there exists a γ_X set S such that $X - S$ is hyper independent set.

Proof: Let S be a γ_X set such that $X - S$ is hyper independent set. Then S is a Y-dominating set of G. Therefore, $\gamma_Y(G) \leq |S| = \gamma_X(G) \Rightarrow \gamma_Y(G) \leq \gamma_X(G)$. But $\gamma_X(G) \leq \gamma_Y(G)$. Therefore, $\gamma_X(G) = \gamma_Y(G)$.

Conversely, let us assume $\gamma_X(G) = \gamma_Y(G)$. Let S be a γ_Y set of G. Therefore, $X - S$ is hyper independent set of G. But every Y-dominating set is a X-dominating set and $\gamma_X(G) = \gamma_Y(G)$, it follows that S is a minimum X-dominating set of G. \hfill \Box

Proposition 2.3.54. Let G be a bipartite graph without isolated vertices with $p \geq q \geq 2$. Let $d(G) = d(G)$ and let $p \geq 2q - 1$. Then, $\gamma_X(G) = \gamma_Y(G)$.

Proof: By a Theorem 1.1.26 (proved in [1]) there exists a vertex in Y of degree p and a vertex in X of degree q. Hence, $\gamma_X(G) = 1 = \gamma_Y(G)$. \hfill \Box

Remark 2.3.55. Suppose $p \leq 2q - 1$. If $q = 2$, the graph satisfying the hypothesis and with no vertex in X of degree q are
In both these graphs \(\gamma_X(G) = 2 = \gamma_Y(G) \).

Let \(q = 3 \) and \(p = 5 \). Consider the graph \(G \):

In this graph, \(d(G) = d(\overline{G}) \), \(G \) and \(\overline{G} \) have no isolated vertices but \(\gamma_X(G) = 1 \neq \gamma_Y(G) = 2 \).

Characterization of bipartite graphs for which \(\gamma_X(G) = \gamma(G) \)

Theorem 2.3.56. Let \(G \) be a bipartite graph. Then \(\gamma_X(G) = \gamma(G) \) if and only if there exists a \(\gamma_X \) set \(S \) such that

(i) \(|S| = |N(S)| \)

(ii) \(N(S) = Y \).

Proof: Assume there exists a \(\gamma_X \) set \(S \) such that (i) \(|S| = |N(S)| \) (ii) \(N(S) = Y \). \(\gamma_X(G) \leq \gamma(G) \) always. Clearly \(Y \) is a dominating set of \(G \). \(\gamma(G) \leq |Y| = |N(S)| = |S| = \gamma_X(G) \). Hence \(\gamma(G) = \gamma_X(G) \).

\(\gamma_X(G) = \gamma(G) \). \(\gamma_X(G) = \gamma_Y(G) \) there exists a \(\gamma_X \) set \(S \) such that \(X - S \) is hyper independent in \(G \). Then, \(S \) is a \(Y \)-dominating set of \(G \). Therefore,
Then S is a $\gamma_X(G)$ set by the condition of minimality of S, S is an Y-isolate, any two vertices in S are not X-adjacent. Therefore, $|S| = |N(S)|$.

Theorem 2.3.57. In a bipartite graph G, $\gamma_X(G) = \gamma(G)$ if and only if G is a galaxy.

Proof: If G is a galaxy then $\gamma_X(G) = \gamma(G)$. Conversely, if $\gamma_X(G) = \gamma(G)$ then there exists a γ_X set S such that (i) $|S| = |N(S)|$ (ii) $N(S) = Y$. Every vertex in Y is adjacent to exactly one vertex of S. If $d(y) \geq 2$ for any $y \in Y$, then it is adjacent to a vertex of $X - S$. Any two vertices in $X - S$ is not X-adjacent through different vertices of Y. For if so, it contradicts $\gamma_X(G) = \gamma(G)$. Hence, G is a galaxy.

2.4 Bipartite theory of complement of a graph

Bipartite theory of Domination in the Graph $\overline{G^2}$ and $\overline{G^2}$

Definition 2.4.1. [15] Let $G = (X, Y, E)$ be a bipartite graph. We define complement of G denoted by $\overline{G_B} = (X, Y, E^c)$ as follows:

(i) No two vertices in X are adjacent.

(ii) No two vertices in Y are adjacent.
(iii) $x \in X$ and $y \in Y$ are adjacent in \overline{G}_B if and only if $x \in X$ and $y \in Y$ are not adjacent in G.

Theorem 2.4.2. In a connected graph $G = (V, E)$, $\gamma_X(\overline{VV(G)}) = \gamma(\overline{G^2})$.

Proof: Let S be a γ_X set of $\overline{VV(G)} = (X, Y, E^1)$. For every $u \in X - S$, there exists $v \in S$ such that u and v are adjacent to $y \in Y$. In $VV(G)$, $u \in X - S$ and $v \in S$ are not adjacent to $y \in Y$.

Case (a): $y = u$ or v.

Assume $y = u$. In $VV(G)$, $u \in X - S$ and $v \in S$ are not adjacent to $u \in Y$. Therefore, in G, $u \in V - S$ and $v \in S$ are not adjacent. Hence, in \overline{G}, $u \in V - S$ and $v \in S$ are adjacent. In $\overline{G^2}$, $u \in V - S$ and $v \in S$ are adjacent. Therefore, S is a dominating set in $\overline{G^2}$.

Assume $y = v$. In $VV(G)$, $v \in X - S$ and $u \in S$ are not adjacent to $v \in Y$. Therefore, in G, $v \in V - S$ and $u \in S$ are not adjacent. Hence, in \overline{G}, $v \in V - S$ and $u \in S$ are adjacent. In $\overline{G^2}$, $v \in V - S$ and $u \in S$ are adjacent. Therefore, S is a dominating set in $\overline{G^2}$.

Case (b): $y \neq u$ and $y \neq v$.

In $VV(G)$, $u \in X - S$ and $v \in S$ are not adjacent to $y \in Y$. Therefore, in G, $u \in V - S$ and $v \in S$ are not adjacent to $y \in V$. Hence, in \overline{G}, $u \in V - S$
and \(v \in S \) are adjacent to \(y \in V \). That is in \(\overline{G^2} \), \(u \in V - S \) and \(v \in S \) are adjacent. Therefore, for every \(u \in V - S \), there exists \(v \in S \) such that \(u \) and \(v \) are adjacent in \(\overline{G^2} \). \(\gamma(G^2) \leq |S| = \gamma_X(VV(G)) \).

Conversely, Let \(D \) be a \(\gamma \) set of \(\overline{G^2} \). Then for every \(u \in V - D \), there exists \(v \in D \) such that \(d(u,v) \leq 2 \) in \(\overline{G} \).

Case (a): \(d(u,v) = 1 \) in \(\overline{G} \).

Since \(d(u,v) = 1 \) in \(\overline{G} \), \(u \in V - D \) and \(v \in D \) are not adjacent in \(G \). Hence, \(u \in X \) and \(v \in Y \) are not adjacent in \(VV(G) \). Thus, \(u \in X \) and \(v \in Y \) are adjacent in \(\overline{VV(G)} \). That is \(u \in X - D \) and \(v \in Y \) are adjacent in \(\overline{VV(G)} \).

Thus, \(v \in Y \) of \(\overline{VV(G)} \) is adjacent to \(v \in D \subseteq X \) of \(\overline{VV(G)} \). Hence, \(u \in X - D \) and \(v \in D \) are adjacent to a common vertex in \(Y \). Thus \(D \) is a \(X \)-dominating set in \(\overline{VV(G)} \).

Case (b): \(d(u,v) = 2 \) in \(\overline{G} \).

\(u \) and \(v \) are adjacent in \(G \) and not adjacent to any vertex \(w \) in \(G \). In \(VV(G) \), \(u \in X - D \) and \(v \in D \) are not adjacent to any vertex \(w \in Y \). In \(\overline{VV(G)} \), \(u \in X - D \) and \(v \in D \) are adjacent to a vertex \(w \in Y \). \(D \) is a \(X \)-dominating set in \(\overline{VV(G)} \).

In either case, we get \(D \) is a \(X \)-dominating set in \(\overline{VV(G)} \). Therefore,
\(\gamma_X(\overline{VV(G)}) \leq G^2 \). Hence, \(\gamma_X(\overline{VV(G)}) = \gamma(G^2) \).

Theorem 2.4.3. In a connected graph \(G = (V, E) \), \(\gamma_X(\overline{VV^+(G)}) = \gamma(G^2) \).

Proof: Let \(S \) be a \(\gamma_X \) set in \(\overline{VV^+(G)} = (X, Y, F) \). For every \(u \in X - S \) there exists \(v \in S \) such that \(u \) and \(v \) are adjacent to a vertex in \(y \in Y \). Let \(y \neq u \) and \(y \neq v \). Then \(u \in X - S \) and \(v \in S \) are not adjacent to \(y \in Y \) in \(VV^+(G) \). Hence, in the graph \(G \), \(u \in V - S \) and \(v \in S \) are not adjacent to \(y \in V \). That is, \(u \in V - S \) and \(v \in S \) are adjacent to a vertex \(y \in V \) in \(\overline{G} \). Therefore, \(u \in V - S \) and \(v \in S \) are adjacent in graph \(\overline{G^2} \). Hence, \(S \) is a dominating set in \(\overline{G^2} \). That is, \(\gamma(\overline{G^2}) \leq |S| = \gamma_X(\overline{VV^+(G)}) \).

Conversely, let \(D \) be a \(\gamma \) set of \(\overline{G^2} \). For every \(u \in V - D \), there exists \(v \in D \) such that \(u \) and \(v \) are adjacent in \(\overline{G^2} \). That is, \(u \) and \(v \) have a common neighbor \(w \) in \(\overline{G} \). Therefore, \(u \) and \(v \) are not adjacent to \(w \) in \(G \). That is, \(u \in X - D \) and \(v \in D \) are not adjacent to \(w \in Y \) in \(VV^+(G) \). So, \(u \in X - D \) and \(v \in D \) are adjacent to \(w \in Y \) in \(\overline{VV^+(G)} \). Therefore, \(D \) is a \(X \)-dominating set in \(\overline{VV^+(G)} \). Hence, \(\gamma_X(\overline{VV^+(G)}) \leq |D| = \gamma(\overline{G^2}) \). That is, \(\gamma_X(\overline{VV^+(G)}) = \gamma(G^2) \).

Theorem 2.4.4. In a connected graph \(G = (V, E) \), \(\gamma_Y(\overline{VV_B(G)}) = \gamma(\overline{G}) \).

Proof: Let \(S \) be a \(\gamma_Y \) set of the graph \(\overline{VV_B(G)} = (X, Y, E^1) \). For every
y \in Y$, there exists $x \in S$ such that x and y are adjacent in $\overline{V V_B(G)}$. Then x and y are not adjacent in $V V(G)$. That is, in G, x and y in V are not adjacent. In \overline{G}, x and y are adjacent. Therefore, for every $y \in V(\overline{G}) - S$, there exists $x \in S$ such that x and y are adjacent. Therefore, S is a dominating set in \overline{G}. $\gamma(\overline{G}) \leq |S| = \gamma_Y(\overline{V V_B(G)})$.

Conversely, let D be a $\gamma(\overline{G})$ set. For every $x \in V(\overline{G}) - D$ there exists $u \in D$ such that x and u are adjacent in \overline{G}. That is, x and u are not adjacent in G. Therefore, x and u are not adjacent. Hence, x and u are adjacent in $\overline{V V_B(G)}$.

Therefore, for every $x \in Y$ there exists $u \in D$ such that x and u are adjacent. Therefore, D is a Y-dominating set in $\overline{V V_B(G)}$. $\gamma_Y(\overline{V V_B(G)}) \leq |D| = \gamma(\overline{G})$.

Hence, $\gamma_Y(\overline{V V_B(G)}) = \gamma(\overline{G})$.

Theorem 2.4.5. In a connected graph $G = (V, E)$, $\gamma_Y(\overline{V V_B^+(G)}) = \gamma_t(\overline{G})$.

Proof: Let S be a γ_Y set in $\overline{V V_B^+(G)} = (X, Y, E^t)$. Every $y \in Y$ is adjacent to an element of S in $\overline{V V^+}$. Therefore, $y \in Y$ is not adjacent to $x \in S$ in $V V^+(G)$. That is, in G, $y \in V$ is not adjacent to $x \in S$ in $V V^+(G)$. Therefore, S is a γ_t set in \overline{G}. Hence, $\gamma_t(\overline{G}) \leq |S| = \gamma_Y(\overline{V V_B^+(G)})$.

Conversely, let D be a γ_t set of \overline{G}. For every $y \in V$, there exists
$x \in D$ such that x and y are adjacent. Then, x and y are not adjacent in G. Therefore, x and y are not adjacent in $\overline{VV^+(G)}$. Hence, x and y are adjacent in $\overline{VV^+_B(G)}$. For every $y \in Y$, there exists $x \in D$ such that x and y are adjacent in $\overline{VV^+_B(G)}$. Therefore, D is a Y-dominating set in $\overline{VV^+_B(G)}$. Therefore, $\gamma_Y(\overline{VV^+_B(G)}) = \gamma_G(G)$. ■

Bipartite theory of Mixed Domination

Theorem 2.4.6. For a graph G, $\gamma_Y(VNe(G)) = \gamma_G(G)$.

Proof: Let $S \subseteq V$ be a $\gamma_Y(VNe)$ set. Elements of S are adjacent to $N[e] \ \forall e \in E(G)$. That is in G elements of S weakly dominates edges of G. Therefore, S is a vertex-edge weak dominating set. Thus, $\gamma_G(G) \leq |S| = \gamma_Y(VNe)$.

Conversely, let S be a vertex edge weak dominating set of G. Then elements of S weakly dominate all edges of G. Equivalently, for every edge $e \in E(G)$, there exists $v \in S$ such that $v \in N[e]$. In the graph $VNe(G)$, $N[e]$ is adjacent to at least one vertex of S. Therefore, S is a Y-dominating set in $VNe(G)$. That is, $\gamma_Y(VNe) \leq |S| = \gamma_G(G)$.

Hence, $\gamma_Y(VNe(G)) = \gamma_G(G)$. ■

Theorem 2.4.7. Every distance 2-dominating set in G is a X-dominating
set in $VNe(G)$.

Proof: Let S be a minimum distance 2-dominating set of G. Then $\forall u \in V - S, \exists v \in S$, such that u and v are at a distance ≤ 2.

Case (i): $d(u, v) = 1$

u and v are incident to a common edge e. In graph VNe, u and v are incident to a vertex $N[e]$. Hence, S is a X-dominating set in $VNe(G)$.

Case (ii): $d(u, v) = 2$

Let $u - v$ path be ue_1we_2v. $N[e_1] = N[u] \cup N[w]$ and $N[e_2] = N[w] \cup N[v]$. In graph $VNe(G)$, u and v are incident with both $N[e_1]$ and $N[e_2]$. Hence, S is a X-dominating set in VNe.

Remark 2.4.8. The converse of the above result is not true. In G, $S = \{a\}$ is not a distance 2-dominating set but in VNe the set $S = \{a\}$ is a X-dominating set.

![Diagram](image)
Theorem 2.4.9. For any graph G, $\gamma_Y(EN^+) = S\gamma_{10}(G)$.

Proof: Let D be a $\gamma_Y(EN^+)$ set. In $EN^+(G)$, every $N[v]$ for every $v \in V(G)$ is adjacent to a vertex in D. In G, D strongly dominates all vertices of G.

Therefore, $S\gamma_{10}(G) \leq |D| = \gamma_Y(EN^+)$.

Conversely, let D be a $S\gamma_{10}$ set. Edges in D strongly dominates all vertices of G. $\langle N[v] \rangle$ contains at least one edge of D for every $v \in V(G)$. Therefore, D is a Y-dominating set in $EN^+(G)$. Therefore, $\gamma_Y(EN^+) \leq |D| = S\gamma_{10}(G)$.

Hence, $\gamma_Y(EN^+) = S\gamma_{10}(G)$. \hfill \blacksquare$

2.5 Well X-Dominated and X-Excellent bipartite graphs

Definition 2.5.1. A bipartite graph G is called well X-dominated if all minimal X-dominating sets have the same cardinality.
Proposition 2.5.2. Let $G = (X, Y, E)$ be a bipartite graph with $|X| = p$ and $|Y| = q$. If there exists a vertex $y \in Y$ of degree p then G is well X-dominated.

Proof: If there exists a vertex $y \in Y$ of degree p, then every vertex in $x \in X$ is X-adjacent to other vertices of X. Therefore, every vertex in X is a γ_X-set of G. Hence, G is well X-dominated.

Definition 2.5.3. A bipartite graph G is called an X-excellent graph if every vertex in X is in a minimum X-dominating set.

Observation 2.5.4. C_{2n} and $K_{m,n}$ are γ_X-excellent.

Note: A vertex $u \in X$ is called end vertex if $|N_Y(u)| = 1$ and the vertex X-adjacent to u is called a support vertex.

Observation 2.5.5. If $G \neq K_{2,1}$ then there exists a γ_X-set containing all the support vertices of G.

Observation 2.5.6. For any γ_X-excellent graph G, every end vertex is in some γ_X-set and no end vertex is in every γ_X-set of G.

Proof: Any γ_X-set contains either an end vertex of G or its support. ■

Observation 2.5.7. Consider a support vertex that is X-adjacent to two or more end vertices. In this case the support vertex must be in every γ_X-set. As a result, the end vertices will be in no γ_X-set. Hence, a graph with any support vertex X-adjacent to more than one end vertex is not γ_X-excellent.
Notation: Let H be a bipartite graph, $H = (X, Y, E)$, $|X| = p$. The X-corona of H is the bipartite graph $G = (X^1, Y^1, E^1)$ where $X^1 = X \cup \{u_1, u_2, \ldots, u_p\}$ and $Y^1 = Y \cup \{v_1, v_2, \ldots, v_p\}$ and every vertex in X is X-adjacent to a unique u_i through $v_i, 1 \leq i \leq p$.

Let G_1 be the family of graphs $G = (X, Y, E)$ satisfying the following: $(|X| - 2)$ vertices of X are X-adjacent to exactly two vertices of X and the remaining vertices are X-adjacent to exactly one vertex of X and all the X-adjacency are through different elements of Y.

Theorem 2.5.8. Every bipartite graph is an induced subgraph of a γ_X-excellent graph.

Proof: Consider any bipartite graph H and let G be the X-corona of a H. Every vertex in $X(H)$ is now a support vertex in G. Therefore, $X(H)$ is a γ_X-set of G. Also, the set of end vertices in G is a γ_X-set. Hence, every vertex in $X(G)$ is in some γ_X-set and so G is an X-excellent graph. Since, H is an induced subgraph of G, every graph is an induced subgraph of some X-excellent graph.

The following result can be easily proved.

Proposition 2.5.9. A bipartite graph $G = (X, Y)$ on even number of ver-
tices such that every vertex in X is X-adjacent to exactly two vertices in X and all X-adjacency are through different vertices is a cycle.

Proposition 2.5.10. Let G be a connected bipartite graph belonging to G_1. Then G is X-excellent if and only if $G = K_{2,1}$ or $|X| \equiv 1 \pmod{3}$.

Proof: Let $G \in G_1$. Suppose $G = K_{2,1}$. Then clearly G is X-excellent. Suppose $|X| \equiv 1 \pmod{3}$. Let $|X| = 4n + 1$. Then as G is connected G is a path on $8n + 1$ vertices and hence, G is X-excellent.

Suppose $G \neq K_{2,1}$ and $|X| \equiv 2 \pmod{3}$. Let $|X| = 3n + 2$. Then G is a path on $6n + 3$ vertices. Let $X(G) = \{u_1, u_2, \cdots, u_{3n+2}\}$ and $Y(G) = \{v_1, v_2, \cdots, v_{3n+1}\}$. Then $\gamma_X(G) = n + 1$ and $u_3, u_6, u_9, \cdots, u_{3n}$ do not belong to any γ_X- set of G. Therefore, G is not X-excellent.

Let $|X| \equiv 0 \pmod{3}$. Let $|X| = 3n$. Then G is a path on $6n - 1$ vertices. Let $X(G) = \{u_1, u_2, \cdots, u_{3n}\}$ and $Y(G) = \{v_1, v_2, \cdots, v_{3n-1}\}$. Clearly, $\gamma_X(G) = n$ and $\{u_2, u_5, \cdots, u_{3n-1}\}$ is the unique γ_X- set of G. Hence, G is not X-excellent.

Definition 2.5.11. A map $\phi : X \to X$ of a bipartite graph $G = (X, Y, E)$ is called an X-automorphism if ϕ is one to one and onto and whenever $u, v \in X$ are X-adjacent then $\phi(u)$ and $\phi(v)$ are X-adjacent and vice versa.
Definition 2.5.12. A bipartite graph \(G = (X, Y, E) \) is \(X \)-transitive if for any \(u, v \in X \), there exists an \(X \)-automorphism \(\phi \) such that \(\phi(u) = v \).

Remark 2.5.13. \(X \)-automorphism of \(VE(G) \) is an automorphism of \(G \).

Theorem 2.5.14. Every \(X \)-transitive bipartite graph is \(X \)-excellent.

Proof: Let \(G = (X, Y, E) \) be a \(X \)-transitive bipartite graph. Let \(u \in X \).

Let \(S \) be a minimum \(X \)-dominating set of \(G \). Suppose \(u \notin S \). Let \(v \in S \).

As \(G \) is \(X \)-transitive, there exists an \(X \)-automorphism \(\phi \) such that \(\phi(u) = v \).

Let \(S = \phi(S) = \{ \phi(x) : x \in S \} \).

Claim: \(S^1 \) is a minimum \(X \)-dominating set of \(G \).

Since \(|S^1| = |S|, |S^1| = \gamma_X(G) \). Let \(x \in X - S^1 \). Let \(y \in X \) be such that \(\phi^1(y) = x \). As \(x \notin S^1, y \notin S \). Therefore, there exists \(w \in S \) such that \(w \) is \(X \)-adjacent to \(y \). Therefore, \(\phi(y) \) is \(X \)-adjacent to \(\phi(w) \). That is, \(x \) is \(X \)-adjacent to \(\phi(w) \in S^1 \). Therefore, \(S^1 \) is a \(X \)-dominating set. Therefore, \(S^1 \) is a minimum \(X \)-dominating set containing \(u \).

Therefore, \(G \) is \(X \)-excellent.

\[\square \]

Corollary 2.5.15. Every transitive graph is excellent.

Corollary 2.5.16. If \(G \) is bipartite graph and \(G \) is \(VE- \) realization of a transitive graph, then \(G \) is \(X \)-excellent. For: let \(G = VE(H) \), where \(H \) is transitive. Then \(VE(H) \) is \(X \)-transitive and hence \(X \)-excellent.
Remark 2.5.17. P_{3n+1} (n ≥ 1) is not transitive, but is excellent. Therefore, $VE(P_{3n+1})$ is not X-transitive but X-excellent.

2.6 X-Irredundant set

Definition 2.6.1. Let $G = (X, Y, E)$ be a bipartite graph. Let $S \subseteq X$. Let $u \in S$. A vertex v is a private X-neighbor of u with respect to S if u is the only point of S, X-adjacent to v.

Definition 2.6.2. A set S is X-irredundant set if every $u \in S$ has a private X-neighbor. The X-irredundance number of a graph G is the minimum cardinality of a maximal X-irredundant set of G and is denoted by $ir_X(G)$.

The upper X-irredundance number of a graph G is the maximum cardinality of a maximal X-irredundant set of G and is denoted by $IR_X(G)$.

Theorem 2.6.3. A X-dominating set S is a minimal X-dominating set if and only if it is X-dominating and X-irredundant.

Proof: Let S be a X-dominating set. Then S is a minimal X-dominating set if and only if for every $u \in S$ there exists $v \in X - (S - \{u\})$ which is not X-dominated by $S - \{u\}$. Equivalently, S is a minimal X-dominating set if and only if $\forall u \in S$, u has at least one private X-neighbor with respect to S. Thus S is minimal X-dominating set if and only if it is X-irredundant.

Conversely, Let S is both X-dominating and X-irredundant.
Claim: S is a minimal X-dominating set.

If S is not a minimal X-dominating set, then there exists $v \in S$ for which $S - \{v\}$ is X-dominating. Since S is X-irredundant, v has a private X-neighbor of with respect to S say u (u may be equal to v). By definition, u is not X-adjacent to any vertex in $S - \{v\}$. $S - \{v\}$ is not a X-dominating set, a contradiction. Hence, S is a minimal X-dominating set.

By the above theorem, any minimal X-dominating set is an X-irredundant set. Therefore, X-irredundant sets exist.

Theorem 2.6.4. Every minimal X-dominating set is a maximal X-irredundant set.

Proof: Every minimal X-dominating set S is X-irredundant set.

Claim: S is a maximal X-irredundant set.

Suppose S is not a maximal X-irredundant set. Then there exists a vertex $u \in X - S$ for which $S \cup \{u\}$ is X-irredundant. Therefore, there exists at least one vertex x which is a private X-neighbor of u with respect to $S \cup \{u\}$. Hence, no vertex in S is X-adjacent to x. Thus S is not X-dominating set, a contradiction. Hence, S is maximal X-irredundant set.

Remark 2.6.5. Clearly $ir_X(G) \leq \gamma_X(G)$ and $\Gamma_X(G) \leq IR_X(G)$. Thus we
have the X-dominating sequence $ir_X(G) \leq \gamma_X(G) \leq i_X(G) \leq \beta_X(G) \leq \Gamma_X(G) \leq IR_X(G)$.

Theorem 2.6.6. For any graph G, (a) $ir_X(VE(G)) = ir(G)$ (b) $ir_X(EV(G)) = ir^1(G)$

Proof: Let S be a ir_X set of $VE(G) = (X, Y, E^1)$. Every v has a private X-neighbor u. Equivalently, v is X-adjacent to u and no other vertex in S is X-adjacent to u. In G, $v \in S$ is the only vertex adjacent to u and no other vertex in S is adjacent to u. Therefore, S is an irredundant set of G. $ir(G) \leq |S| = ir_X(VE(G))$.

Let U be an $ir-$ set of G. For every vertex $v \in U$, $pn[v, U] \neq \emptyset$. Every vertex $v \in U$ has at least one private neighbor with respect to u. In $VE(G)$, that is every vertex $v \in U$ has at least one private X-neighbor. Therefore, U is an X-irredundant set. Hence, $ir_X(VE(G)) \leq |U| = ir(G)$. Hence, $ir_X(VE(G)) = ir(G)$.

(b) Let S be an ir_X set of $EV(G) = (X, Y, E^1)$. Every e has a private X-neighbor f. Equivalently, e is X-adjacent to f and no other vertex in S is X-adjacent to f. In G, $e \in S$ is the only edge adjacent to f and no other edge in S is adjacent to f. Therefore, S is an edge irredundant set of G.

50
Hence, \(ir^1(G) \leq |S| = ir_X(EV(G)) \).

Let \(U \) be a \(ir^1 \)-set of \(G \). For every edge \(e \in U \), \(pn[e, U] \neq \phi \). Hence, every edge \(e \in U \) has at least one private neighbor. That is, in \(EV(G) \), every vertex \(e \in U \) has at least one private \(X \)-neighbor. Therefore, \(U \) is an \(X \)-irredundant set in \(EV(G) \). Thus, \(ir_X(EV(G)) \leq |U| = ir^1(G) \). Hence, \(ir_X(EV(G)) = ir^1(G) \). ■

2.7 Strong nonsplit \(X \)-Domination number of a bipartite graph

Let \(G = (X, Y, E) \) be bipartite graph.

Definition 2.7.1. A \(X \)-dominating set of \(G \) is said to be a strong nonsplit \(X \)-dominating set of \(G \) if every vertex in \(X - D \) is \(X \)-adjacent to all other vertices in \(X - D \). (That is, \(X - D \) is \(X \)-complete). The strong nonsplit \(X \)-domination number of a graph \(G \), denoted by \(\gamma_{nsX}(G) \) is the minimum cardinality of a strong nonsplit \(X \)-dominating set.

Remark 2.7.2. Let \(G \) be a bipartite graph with at least one non \(Y \)-isolate say \(x \). Then \(X - \{x\} \) is a strong nonsplit \(X \)-dominating set of \(G \). Therefore, every bipartite graph with at least one non \(Y \)-isolate has a strong nonsplit \(X \)-dominating set of \(G \).
Notation: Let S_p be a bipartite graph (X, Y, E), $|X| = p$; $|Y| = p - 1$ with a vertex in X, X-adjacent to all other vertices of X through different $y \in Y$ and all vertices in $X - \{x\}$ are end vertices.

Theorem 2.7.3. (a) $\gamma_{s_{n\in X}}(K_{m,n}) = 1$ (b) $\gamma_{s_{n\in X}}(C_{2n}) = |X| - 2$ if $n \neq 2$ and $is = 1$ if $n = 2, 3$ (c) $\gamma_{s_{n\in X}}(S_p) = p - 1$.

Theorem 2.7.4. Let G be a bipartite graph with $p \geq 3$ and there exists vertices x_1, x_2, x_3 which are mutually X-adjacent. Then $\gamma_{s_{n\in X}}(G) \leq p - 2$.

Proof: By hypothesis, there exists vertices x_1, x_2, x_3 which are mutually X-adjacent. Then $X - \{x_2, x_1\}$ is a strong non-split X-dominating set of G.

$\gamma_{s_{n\in X}}(G) \leq p - 2.$

Theorem 2.7.5. A strong non-split X-dominating set D of G is minimal if and only if for all $v \in D$, one of the following conditions hold

(i) u is an Y-isolate of D.

(ii) there exists a $u \in X - D$ such that u is Y-private neighbor of v.

(iii) there exists a vertex $w \in X - D$ such that w is not X-adjacent to v.

Proof: Let D be a minimal strong non-split X-dominating set.

Let $v \in D$, then $D - \{v\}$ is not a strong non-split X-dominating set. Either there exists $w \in X - (D - \{v\})$ which is not X-adjacent to $v \in D$ or vertices in $X - (D - \{v\})$ are not X-complete.
Case (i) there exists \(w \in X - (D - \{v\}) \) which is not \(X \)-adjacent to \(v \in D \) then either \(v = w \) in which case \(v \) is an \(Y \)-isolate of \(D \) which is (i) or \(w \in X - D \). If \(w \) is not \(X \)-adjacent with any vertex in \(D \) then \(w \) is a \(Y \)-private neighbor of \(v \) which is (ii).

Case (ii) vertices in \(X - (D - \{v\}) \) are not \(X \)-complete. Equivalently there is a vertex \(w \in X - D \) which is not \(X \)-adjacent to \(v \) which is (iii).

Conversely, let for some \(v \in V \) some of the three conditions hold. Then \(D - \{u\} \) is a \(X \)-dominating set of \(D \) such that \((X - D) \cup \{v\} \) is \(X \)-complete. Therefore, \(D - \{v\} \) is a strong nonsplit \(X \)-dominating set of \(G \). That is \(D \) is not a minimal strong nonsplit \(X \)-dominating set of \(G \).

Theorem 2.7.6. Let \(G \) be a graph with \(\Delta_Y(G) \leq p - 2 \). Let \(D \) be a strong nonsplit \(X \)-dominating set of \(G \) such that \((D) \) is a \(X \)-clique and \(|D| \leq \delta_Y(G) \). Then (i) \(D \) is a minimal nonsplit \(X \)-dominating set. (ii) \(X - D \) is also a minimal strong nonsplit \(X \)-dominating set of \(G \).

Proof: Since \(\Delta_Y(G) \leq p - 2 \), for every \(v \in D \), there exists \(w \in X - D \) such that \(v \) and \(w \) are not \(X \)-adjacent. Hence, \(D \) is a minimal nonsplit \(X \)-dominating set. Since \(|D| \leq \delta_Y(G) \), every vertex in \(D \) is \(X \)-adjacent to some vertex in \(X - D \). Since \((D) \) is a \(X \)-clique, \(X - D \) is a strong nonsplit
X-dominating set of G. Also by the above theorem, X−D is also minimal. □

Theorem 2.7.7. For any connected graph G, \(\beta_X(G) \leq \gamma_{s_{xn}}(G) \) and the bound is sharp.

Proof: Let D be a \(\gamma_{s_{xn}} \) set of G. Then any two vertices in X−D are X-adjacent. Moreover every vertex in X−D is X-adjacent to a vertex of D. Therefore, \(\beta_X \leq |D| = \gamma_{s_{xn}}(G) \). The bound is attained in \(K_{m,n} \). □

Definition 2.7.8. A strong nonsplit X-dominating set D is said to be an X-independent strong nonsplit X-dominating set if D is X-independent.

Theorem 2.7.9. If a connected graph G has an X-independent strong nonsplit X-dominating set and \(d(u,v) \leq 6 \) \(\forall u,v \in X \).

Proof: Let D be an X-independent strong nonsplit X-dominating set of G.

Let \(u,v \in X(G) \).

Case (i): \(u,v \in X−D \).

Then u and v are X-adjacent. Hence, \(d(u,v) = 2 \leq 6 \).

Case (ii): \(u \in D \) and \(v \in X−D \).

Since D is X-independent, \(N_Y(u) \in X−D \). Let \(w \in N_Y(u) \). If \(w = v \) then \(d(u,v) = 2 \). Let \(w \neq v \) then \(d(u,v) \leq d(u,w) + d(w,v) = 4 \leq 6 \).

Case (iii): Let \(u,v \in D \).
Since G is connected, there exists two vertices $w_1, w_2 \in X - D$ such that u is X-adjacent to w_1 and v is X-adjacent to w_2. If $w_1 = w_2$ then $d(u, v) \leq d(u, w_1) + d(w_1, v) \leq 4$. If $w_1 \neq w_2$ then as $w_1, w_2 \in X - D, W_1$ and w_2 are X-adjacent. Therefore, $d(u, v) \leq d(u, w_1) + d(w_1, w_2) + d(w_2, v) = 6$. ■

Corollary 2.7.10. If $\gamma_X(G) = \gamma_{snaX}(G)$, then $d(u, v) \leq 6 \forall u, v \in X(G)$.

Theorem 2.7.11. For any bipartite graph G, $p - \omega_X(G) \leq \gamma_{snaX}(G) \leq p - \omega_X + 1$.

Proof: Let D be a γ_{snaX}-set. Then $X - D$ is a X-clique. Therefore, $\omega_X(G) \geq |X - D| = p - \gamma_{snaX}$. Therefore, $\gamma_{snaX}(G) \geq p - \omega_X(G)$.

Let S be a X-clique set of order $\omega_X(G)$. Then $(X - S) \cup \{w\}, w \in S$ is a strong nonsplit X-dominating set. Hence, $\gamma_{snaX}(G) \leq |X - S| + 1 = p - \omega_X + 1$. ■

Theorem 2.7.12. Let G be a connected bipartite graph with $\omega_X(G) \geq \delta_Y(G)$. Then $\gamma_{snaX}(G) \leq p - \delta_Y(G)$ and the bound is attained if and only if one of the following conditions is satisfied (i) $\omega_X(G) = \delta_Y(G)$ (ii) $\omega_X(G) = \delta_Y(G) + 1$ and every ω_X-set S of X contains a vertex not X-adjacent to any vertex of $X - S$.

Proof: Suppose $\omega_X(G) \geq \delta_Y(G) + 1$. Then, $\gamma_{snaX}(G) \leq p - \omega_X + 1 \leq p - \delta_Y - 1 + 1 = p - \delta_Y$. Let $\omega_X(G) = \delta_Y$. Let S be a ω_X-set of G with
\(|S| = \omega_X(G) \). Since \(|S| = \delta_Y(G) \) every vertex in \(S \) is \(X \)-adjacent to at least one vertex in \(X - S \). That is, \(X - S \) is a \(X \)-dominating set and hence a the nonsplit \(X \)-dominating set. Therefore, \(\gamma_{\text{smax}}(G) \leq p - \omega_X(G) \leq p - \delta_Y(G) \).

Already, \(p - \omega_X(G) \leq \gamma_{\text{smax}}(G) \). Therefore, \(\gamma_{\text{smax}}(G) = p - \delta_Y(G) \).

Assume condition (ii). That is, \(\omega_X(G) = \delta_Y(G) + 1 \) and every \(\omega_X \)-set \(S \) contains a vertex not \(X \)-adjacent to any vertex of \(X - S \). Let \(w \in S \) be the vertex not \(X \)-adjacent to any vertex of \(X - S \). Then \((X - S) \cup \{w\} \) is a nonsplit \(X \)-dominating set. Therefore, \(\gamma_{\text{smax}}(G) \leq p - \omega_X(G) + 1 = p - \delta_Y - 1 + 1 = p - \delta_Y(G) \). That is \(\gamma_{\text{smax}}(G) \leq p - \delta_Y(G) \), Since every \(\omega_X \) set of cardinality \(\delta_Y + 1 \) contains a vertex not \(X \)-adjacent to any vertex of \(X - S \). Therefore, \(\gamma_{\text{smax}}(G) \geq p - \delta_Y \). Hence, \(\gamma_{\text{smax}}(G) = p - \delta_Y \).

Conversely, let \(\gamma_{\text{smax}}(G) = p - \delta_Y \). Then, \(\omega_X = \delta_Y \) or \(\omega_X = \delta_Y + 1 \).

Suppose there exists a \(\omega_X \)-set \(S \) with \(|S| = \delta_Y + 1 \) such that every vertex in \(S \) is \(X \)-adjacent with some vertex in \(X - S \). Then \(X - S \) is a strong nonsplit \(X \)-dominating set of \(G \). Hence, \(\gamma_{\text{smax}} \leq p - \delta_Y - 1 \), a contradiction. Hence, one of the given conditions is satisfied.
2.8 X-vertex critical graphs

Definition 2.8.1. A bipartite graph G is called X-vertex critical if $\gamma_X(G - x) \geq \gamma_X(G)$.

We define $V_{\gamma_X}(G) = \{v \in X : v \text{ belongs to every } \gamma_X \text{ set of } G\}$

Theorem 2.8.2. A bipartite graph G has a unique minimum X-dominating set if and only if the set $V_{\gamma_X}(G)$ is a X-dominating set of G.

Proof: Let D be unique minimum X-dominating set then $V_{\gamma_X}(G) = D$, which is X-dominating set of G. $V_{\gamma_X}(G)$ is X-dominating set of G. Let D be a minimum X-dominating set of G. Then, $V_{\gamma_X}(G) \subseteq D$. Therefore, $V_{\gamma_X}(G) = D$. \qed

Definition 2.8.3. Let $S \subseteq X$ be set of vertices. Let $u \in S$. v is X-private neighborhood of u denoted by $pn_X[u, S]$ is defined as $pn_X[u, S] = N_Y[v] \cap S = \{u\}$.

Theorem 2.8.4. Let G be a bipartite graph and let G have a unique γ_X-set D. Then every vertex in D has atleast two X-private neighbors.

Proof: Let D be a unique γ_X-set. Let $x \in D$. Then either x itself is a X-private neighbor of x in D or there exists a $x_1 \in X$ which is a X-private neighbour of $x \in D$. Let $D_1 = (D - \{x\}) \cup \{x\}$. Then, D_1 is not a X-
dominating set. Therefore, there exists a X-private neighbour of x say x_2 in $X - D_1$ and $x_2 \neq x_1$. Therefore, x has at least two X-private neighbours. ■

Theorem 2.8.5. Let D be a γ_X-set of a graph G. If $\gamma_X(G - x) > \gamma_X(G)$ $\forall x \in D$, then D is unique γ_X-set of G.

Proof: Let D be γ_X-set of G such that $\gamma_X(G - x) > \gamma_X(G)$ $\forall x \in D$. Suppose there is a γ_X-set D^1 of G different from D. There exists $x \in D - D^1$ and D^1 X-dominates $X - \{x\}$, a contradiction, since $|D^1| \geq \gamma_X(G - x) > \gamma_X(G) = |D|$. Hence, D is unique γ_X-set of G. ■

Remark 2.8.6. Let D be a γ_X-set of G for which every vertex in D has at least two X-private neighbours need not imply $\gamma_X(G - x) > \gamma_X(G)$ $\forall x \in D$.

![Graph G](image1)

![Graph G - x1](image2)
Proof: $D = \{x_1, x_2\}$ is a γ_X-set in G. x_1 has got two private X-neighbours namely x_1 and x_3 and x_2 has two X-private neighbours namely x_2 and x_4. $\gamma_X(G - x) = \gamma_X(G)$.

Theorem 2.8.7. Let G be a bipartite graph without X-isolates. Then there exists a γ_X-set D of G such that every vertex $v \in D$ has X-private outside D.

Proof: Let D be a γ_X- of G. Let $u \in D$. Then u is either a X-isolate of D or has a X-private neighbour in $X - D$.

Suppose u is an X-isolate of D. Since u is not an X-isolate of G, there exists a vertex $v \in X - D$ such that u and v are X-adjacent. Let $D_1 = (D - \{u\}) \cup \{v\}$. D_1 is a γ_X- set of G in which v has a X-private neighbour namely u.

Repeating this process, after a finite stage, we get a γ_X-set D^* of G such that every vertex $v \in D^*$ has a X-private outside D^*.

We define the sets V^+_X and V^0_X as follows:

$V^+_X = \{x \in X : \gamma_X(G - x) > \gamma_X(G)\}$ and $V^0_X = \{x \in X : \gamma_X(G - x) = \gamma_X(G)\}$.

Theorem 2.8.8. A vertex $v \in V^+_X$ if and only if $N_Y(v) \neq \emptyset$ and v is in every
\(\gamma_X \)-set of \(G \) and no subset \(S \subseteq X - N_Y[v] \) with cardinality \(\gamma_X(G) \) dominates \(G - \{v\} \).

Proof: Suppose \(v \in V_X^+ \). It is clear \(N_Y(v) \neq \emptyset \). For: suppose \(N_Y(v) = \emptyset \), \(v \) is an \(X \)-isolate. Therefore, \(\gamma_X(G - v) = \gamma_X(G) \), a contradiction. Let \(D \) be a \(\gamma_X \)-set which does not contain \(v \). Then \(D \) \(X \)-dominates \(G - \{v\} \), a contradiction, since, \(\gamma_X(G - v) > \gamma_X(G) \). Hence, \(v \) is in all \(\gamma_X \) set of \(G \). Since \(\gamma_X(G - x) > \gamma_X(G) \), the other condition follows.

Conversely, let \(v \in X \) satisfy the conditions \(N_Y(v) \neq \emptyset \), \(v \) is in every \(\gamma_X \)-set of \(G \) and no subset \(S \subseteq X - N_Y[v] \) with cardinality \(\gamma_X(G) \) \(X \)-dominates \(G - v \).

Suppose \(\gamma_X(G - x) \leq \gamma_X(G) \). Let \(D_1 \) be a minimum \(X \)-dominating set of \(G - \{v\} \). Let \(V' \in N_Y(v) \). If \(v' \in D^1 \), then \(D_1 \) is a \(X \)-dominating set of \(G \) with cardinality less than or equal to \(\gamma_X(G) \). Therefore, \(|D_1| = \gamma_X(G) \) and \(D_1 \) does not contain \(D \), a contradiction. Therefore, \(N_Y(v) \cap D_1 = \emptyset \). Hence, \(D_1 \subseteq X - N_Y[v] \). If \(|D_1| = \gamma_X(G) \), \(|D_1 \cup \{v\}| < \gamma_X(G) \), a contradiction, since \(D_1 \cup \{v\} \) is a \(X \)-dominating set of \(G \). Therefore, \(|D_1| = \gamma_X(G) - 1 \).

Let \(v_1 \in N_Y(v) \). \(v_1 \notin D_1 \). Then \(D_1 \cup \{v_1\} \) is a \(X \)-dominating set of \(G \) with cardinality \(\gamma_X(G) \) and \(v \notin D \cup \{v_1\} \), a contradiction. Therefore,
\[\gamma_X(G - v) > \gamma_X(G). \]

Theorem 2.8.9. Suppose \(v \in V_X^+ \). Then for any \(\gamma_X \)-set \(S \) of \(G \), \(pn_X[u, S] \) contains at least two non \(X \)-adjacent vertices.

Proof: Since \(u \in V_X^+ \), \(u \) belongs to every \(\gamma_X \)-set of \(G \). Therefore, \(u \in S \).

Suppose \(pn_X[u, S] = \{ u \} \). Then \((S - \{ u \}) \cup \{ v \} \) where \(v \in N_Y(u) \) is a \(\gamma_X \)-set of \(G \) not containing \(u \), a contradiction. Therefore, \(pn_X[u, S] \) contains a vertex say \(w \) in \(X - S \). Suppose any two vertices of \(pn_X[u, S] \) are \(X \)-adjacent. Then \((S - \{ u \}) \cup \{ w \} \) for any \(w \in pn_X[u, S] \) is a \(\gamma_X \)-set of \(G \) not containing \(u \), a contradiction.

We define the set \(V_X^- = \{ v \in X : \gamma_X(G - v) < \gamma_X(G) \} \).

Theorem 2.8.10. A vertex \(v \) is in \(V_X^- \) if and only if \(pn_X[v, S] = \{ v \} \) for some \(\gamma_X \)-set \(S \) containing \(v \).

Proof: Let \(v \in V_X^- \) and \(D \) be a \(\gamma_X \)-set of \(G - v \). Then \(S = D \cup \{ v \} \) is a \(\gamma_X \)-set of \(G \). If \(D \) contains \(N_Y(v) \), then \(D \) is \(X \)-dominating set of \(G \) contradicting our assumption \(\gamma_X(G - v) < \gamma_X(G) \). Hence, \(pn_X[v, S] = \{ v \} \).

Conversely if \(pn_X[v, S] = \{ v \} \) for some \(\gamma_X \) set \(S \) containing \(v \), then \(S - \{ v \} \) dominates \(G - v \) hence, \(v \in V_X^- \).

Theorem 2.8.11. If \(u \in V_X^+ \) and \(v \in V_X^- \) then \(x \) and \(y \) are not \(X \)-adjacent.
Proof: Suppose u and v are X-adjacent. Let S be a X-dominating set of $G-v$ with cardinality $\gamma_X(G)-1$. If S contains u then S is a X-dominating set of G (since u and v are X-adjacent) a contradiction, since $|S| = \gamma_X(G) - 1$.

Therefore, S does not contain u. $S \cup \{v\}$ is a γ_X-set of G not containing u, a contradiction, since u belongs to every γ_X-set of G. Therefore, u and v are not X-adjacent.

Theorem 2.8.12. For any bipartite graph G, $|V_X^0| \geq 2|V_X^+|$.

Proof: Let $u \in V_X^+$. Let S be any γ_X-set of G. Then $u \in S$ and $pn_X[u, S]$ contains atleast two non X-adjacent vertices, say $w_1, w_2 \in X - S$. Clearly, $w_1, w_2 \notin V_X^-$. Also $w_1, w_2 \notin V_X^-$ since $u \in V_X^+$ and w_1, w_2 are X-adjacent to u (using $u \in V_X^+$ and $v \in V_X^-$ then u and v are not X-adjacent). Therefore, $w_1, w_2 \in V_X^0$. Hence, every vertex in V_X^+ has atleast two private X-neighbours in V_X^0. Therefore, $|V_X^0| \geq 2|V_X^+|$.

Theorem 2.8.13. $\gamma_X(G) \neq \gamma_X(G) \forall v \in X$ if and only if $X = V_X^-$.

Proof: If $X = V_X^-$, then $\gamma_X(G) \neq \gamma_X(G) \forall v \in X$.

Suppose $\gamma_X(G) \neq \gamma_X(G) \forall v \in X$. Then $V_X^0 = \phi$. Suppose $V_X^+ \neq \phi$. Then, as $|V_X^0| \geq 2|V_X^+|$, we get that $V_X^0 \neq \phi$, a contradiction. Therefore, $V_X^+ = \phi$.

Therefore, $X = V_X^-$.

62
Theorem 2.8.14. If $v \in V_X^-$ and v is not an X-isolate then there exists a γ_X-set S of G such that $v \notin S$.

Proof: Let $v \in V_X^-$ and u be not X-isolate. Since $v \in V_X^-$, there exists a γ_X-set S of G such that $pn_X[v,S] = \{v\}$. Therefore, $S - \{v\}$ does not contain any X-neighbour of v. Therefore, $S - \{v\} \subseteq X - N_Y[v]$. Also $S - \{v\}$ X-dominates $G - v$. Therefore, $(S - \{v\}) \cup \{u\}$ is a γ_X-set of G for any $u \in N_Y(v)$ and $(S - \{v\}) \cup \{u\}$ does not contain v. ■

Definition 2.8.15. A bipartite graph G is in CVR if $\gamma_X(G - v) \neq \gamma_X(G)$ $\forall v \in X$.

Theorem 2.8.16. A bipartite graph G is in CVR if and only if $\forall v \in X$ there exists a γ_X-set S of G such that $pn_X[v,S] = \{v\}$.

Proof: We know that, $\gamma_X(G) \neq \gamma_X(G) \forall v \in X$ if and only if $X = V_X^-$. Therefore, $\forall v \in X$, there exists a γ_X-set S of G such that $pn_X[v,S] = \{v\}$. ■