CONTENTS

<table>
<thead>
<tr>
<th>Chapters</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acknowledgement</td>
<td></td>
<td>v</td>
</tr>
<tr>
<td>List of Figures</td>
<td></td>
<td>xiii</td>
</tr>
<tr>
<td>List of Tables</td>
<td></td>
<td>xvi</td>
</tr>
<tr>
<td>List of Publications</td>
<td></td>
<td>xvii</td>
</tr>
</tbody>
</table>

I. INTRODUCTION

1.1 STOCHASTIC PROCESSES 2
 1.1.1 SPECIFICATION OF STOCHASTIC PROCESS 3
 1.1.2 TRANSITION MATRIX 5
 1.1.3 CLASSIFICATION OF STATES 7

1.2 STATISTICAL DATA MINING 10

1.3 OUTLIER DETECTION 11

1.4 APPLICATIONS OF FUZZY STOCHASTIC MODELS 12

1.5 STATISTICS IN DIGITAL IMAGE PROCESSING 22
 1.5.1 PROPERTIES OF DIGITIZED IMAGE 23
 1.5.2 LINEAR AND NON LINEAR FILTERS 26
II. LITERATURE REVIEW

2.1 CLASSIFICATION AND CLUSTERING
2.2 OUTLIER MINING
2.3 TIME SERIES ANALYSIS
2.4 TIME SERIES DATA MINING
2.5 SEQUENTIAL ANALYSIS
2.6 FUZZY STOCHASTIC MODELS
2.7 MARKOV CHAIN MONTE CARLO METHODS

III. FUZZY STOCHASTIC MODELS

3.1 INTRODUCTION
3.2 FUZZY TIME SERIES
3.3 AVERAGE BASED METHOD
3.4 COMPUTATIONAL ALGORITHM
3.5 COMPUTATIONAL RESULTS
 3.5.1 Time Variant Fuzzy Time Series
 3.5.2 Time invariant Fuzzy Time Series
3.6 CONCLUSION
VI. FUZZY STOCHASTIC SYSTEMS IN DATA MINING

6.1 FUZZY STOCHASTIC SYSTEMS 132
6.2 FUZZY STOCHASTIC LOGIC 135
6.3 FUZZY STOCHASTIC SETS 136
6.4 IMAGE RESTORATION 137
6.5 CHARACTERIZATION OF NOISE 139
 6.5.1 Gaussian noise 139
 6.5.2 Rayleigh noise 140
 6.5.3 Erlang (Gamma) noise 140
 6.5.4 Exponential noise 141
 6.5.5 Uniform noise 141
 6.5.6 Impulse (salt and pepper) noise 142
6.6 REMOVAL OF NOISE USING FILTERS 143
6.7 ANALYSIS OF FUZZY IMPULSE DETECTION AND REDUCTION 147
6.8 IMPULSE NOISE FOR GRAYSCALE IMAGES 147
6.9 FUZZY STOCHASTIC IMPULSE NOISE DETECTION AND REDUCTION METHOD (FSIDRM) 149
6.10 COMPUTATIONAL EVALUATION 158
6.11 COMPUTATIONAL RESULTS 160
6.12 CONCLUSION 163

VII. SUMMARY AND CONCLUSIONS 164

BIBLIOGRAPHY 168