Table of Contents

Abbreviations
Preface

Chapter 1

Introduction

1.1 Lrp/AsnC Family of transcriptional regulators 2
1.2 Feast/Famine regulatory protein (FFRP) 3
 1.2.1 Types of FFRPs on the basis of domain organization 4
 1.2.2 Modular Structure of FFRPs 10
 1.2.2.1 DNA binding Domain 10
 1.2.2.2 Effector binding domain 13
 1.2.3 Types of assembly 16
 1.2.4 Ligand mediated transition of assemblies 19
 1.2.5 Proposed mechanisms of Transcription regulation by FFRPs 19
1.3 Rv3291c 22

Chapter 2

Materials & Methods

2.1 Introduction 23
2.2 Database searches and sequence alignment studies 23
2.3 Primers and vectors 23
2.4 Cloning and overexpression 24
 2.4.1 Cloning and overexpression of MtbLrp 24
 2.4.2 Cloning and overexpression of MtbLrpN 25
 2.4.3 Cloning and overexpression of MtbLrp102, MtbLrp104 and MtbLrpDL 26
2.5 Purification of Wild Type and Mutant Proteins 27
 2.5.1 Purification of MtbLrp 27
 2.5.2 Purification of MtbLrpN 28
 2.5.3 Purification of MtbLrp104 29
 2.5.4 Purification of MtbLrp102 29
2.6 Mass spectroscopy (MALDI) 30
2.7 Crystallization 30
 2.7.1 Preparation 30
 2.7.2 Crystallization trials 31
 2.7.3 Heavy atom derivatives of MtbLrp 32
 2.7.3.1 Screening of Heavy atom derivative 32
 2.7.3.2 Optimization of Heavy atom derivative 32
 2.7.4 Crystallization of mutants 32
 2.7.5 Co-crystallization with Amino acids 32
2.8 Solution structure for MtbLrp 33
2.8.1 Data collection
 2.8.1.1 Instrument
 2.8.1.2 Detector
2.8.2 Data processing
2.8.3 Structure determination and model building
 2.8.3.1 Molecular replacement
 2.8.3.1.1 Phaser
 2.8.3.2 Multiwavelength anomalous dispersion
 2.8.3.3 Multiple isomorphous replacement method
 2.8.3.3.1 Determining Heavy atom positions
 2.8.3.3.2 Refinements of Heavy atom parameters
 2.8.3.3.3 Phase determination
 2.8.3.3.4 Software used for structure determination
2.8.4 Structure refinement and validation
 2.8.4.1 REFMAC5
 2.8.4.2 Fourier maps and map interpretation
 2.8.4.2.1 Omit maps
 2.8.4.3 Geometric analysis
 2.8.4.3.1 PROCHECK
 2.8.4.3.2 Hydrogen bonds
 2.8.4.3.3 Surface area calculation
 2.8.4.3.3 Superimposition of structures
2.9 Characterization of protein
 2.9.1 DNA binding assay of MtbLrp
 2.9.1.1 Preparation of Substrate
 2.9.1.2 Gel Shift Assay
 2.9.2 Gel filtration analysis
 2.9.2.1 Oligomeric Association
 2.9.2.2 Effect of amino acids
 2.9.3 Fluorescence Spectroscopy

Chapter 3
Cloning, purification and activity of MtbLrp

3.1 Introduction
3.2 Results and Discussion
 3.2.1 Sequence alignment studies
 3.2.2 Cloning, over expression, purification
 3.2.2.1 Cloning, over expression and purification of MtbLrp
 3.2.2.2 Cloning, over expression and purification of MtbLrpN
 3.2.2.3 Cloning, over expression and purification of MtbLrp102
 3.2.2.4 Cloning, over expression and purification of MtbLrp104
 3.2.2.5 Cloning and over expression of MtbLrpDL
 3.2.3 DNA binding assay of MtbLrp
 3.2.4 Ligand/Effecter binding activity of MtbLrp
3.3 Summary
Chapter 4

Structure determination and analysis of MtbLrp

4.1 Introduction 67
4.2 Crystallization 67
4.3 Structure solution and refinement 69
 4.3.1 Data collection and processing 69
 4.3.2 Structure solution using MIR 72
 4.3.2.1 Heavy atom screening for MIR 72
 4.3.2.2 Data collection of Heavy atom derivative 74
 4.3.2.3 SOLVE/RESOLVE 76
 4.3.3 Structure refinement 78
4.4 Structural analysis 80
 4.4.1 Model Quality 80
 4.4.2 Tertiary Structure of MtbLrp 80
 4.4.3 Dimeric structure of MtbLrp 82
 4.4.4 Quaternary structure of MtbLrp 82
4.5 Rigid and Flexible region of MtbLrp 88
4.6 Similarity with other Lrp/AsnC’s family members 90

Chapter 5

Identification and characterization of Ligand binding sites

5.1 Introduction 92
5.2 Identification of Ligand binding site 92
5.3 Co-crystal structures of MtbLrp 99
5.5 X-ray Based Ligand Screening 123
5.6 Role of different ligand binding site of MtbLrp 124
5.7 Gel Filtration Analysis 129
5.8 Mutational analysis of MtbLrp 131
 5.8.1 Structure solution of MtbLrp104 mutant 131
 5.8.1.1 Structural analysis of MtbLrp104 131
 5.8.1.2 Effect of MtbLrp on binding site I 136
 5.8.1.3 Effect of MtbLrp on binding site II 136
 5.8.2 Structure solution of MtbLrp102 mutant 138
 5.8.2.1 Data Collection and processing 138
 5.8.2.2 Structure solution using Phaser 138
 5.8.2.3 Structure Refinement 139
 5.8.2.4 Overall structure of MtbLrp102 mutant 141
5.9 Summary 145
Chapter 6

Cloning, Purification and Characterization of GlgB (Rv1326c)

6.1 Glycogen branching enzymes
 6.1.1 α amylase family of enzymes 146
 6.1.2 Domain organization of Branching enzyme 147
 6.1.3 GlgB (Glycogen branching enzyme) 149

6.2 Material and Methods
 6.2.1 Database searches and sequence alignment studies 150
 6.2.2 Primers and vectors 150
 6.2.3 Cloning and expression and purification 151
 6.2.3.1 Cloning and expression and purification of GlgB 151
 6.2.3.2 Cloning and expression and purification of NGlgB 152
 6.2.3.3 Cloning and expression and purification of TGlgBc 153
 6.2.4 Characterization of protein 154
 6.2.4.1 Enzyme assay 154
 6.2.4.2 Spectroscopic Analysis 154
 6.2.4.2.1 Fluorescence 154
 6.2.4.2.2 Circular Dichroism 155
 6.2.5 Crystallization 156
 6.2.6 Molecular Modeling 156

6.3 Results and Discussions
 6.3.1 Conservation among α-amylase family 157
 6.3.2 Cloning over-expression and purification full-length proteins 158
 6.3.3 Crystallization of full length Proteins 160
 6.3.4 Activity of branching enzyme 161
 6.3.5 Chemical and thermal denaturation of enzyme 162
 6.3.6 Modeled structure of enzyme 167

6.4 Summary 169

References 172

Annexure 181