Table of Contents

Abbreviations i
Preface ii

Chapter 1

Analysis of Hypothetical proteins of *Mycobacterium tuberculosis*

1.1 Conserved hypothetical proteins 1
1.2 *Mycobacterium tuberculosis* 2
 1.2.1 Classification of proteins in mycobacterium 4
 1.2.2 Conserved hypothetical proteins in mycobacterium 4
1.3 Criteria for target prioritization among conserved hypotheticals in *M. tuberculosis* 6
 1.3.1 Phylectic distribution 6
 1.3.2 Essentiality of genes in *M. tuberculosis* 6
 1.3.2.1 Comprehensive identification of hypothetical genes which are conditionally essential 7
 1.3.2.2 Hypothetical genes required for mycobacterial survival during infection 7
 1.3.3 Hypothetical genes required adaptation and survival in macrophages 10
 1.3.4 Identification of hypothetical genes in dormant phase 12
 1.3.4.1 Betts model 14
 1.3.4.2 Hampshire model 14
 1.3.4.3 Schnappinger model 15
 1.3.4.4 Karakousis model 15
1.4 Clustering of hypothetical genes from different data sets 18
1.5 The secretion pathways in *M. tuberculosis* 23
 1.5.1 The general secretion pathway 23
 1.5.2 The twin-arginine transporter 24
 1.5.3 The ESAT-6 secretion system 25
 1.5.4 Rv3868, a conserved hypothetical protein of ESX-1 System 25
1.6 Rv2557 and Rv2558 28

References 29
Chapter 2

Functional and Structural characterization of Rv3868, An essential hypothetical protein of ESX-1 system

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Introduction</td>
<td>37</td>
</tr>
<tr>
<td>2.2 Materials and Methods</td>
<td>38</td>
</tr>
<tr>
<td>2.2.1 Multiple sequence alignment and construction of Phylogenetic tree</td>
<td>38</td>
</tr>
<tr>
<td>2.2.2 Cloning, expression and purification of Rv3868, CT-Rv3868 and CFP-10</td>
<td>38</td>
</tr>
<tr>
<td>2.2.3 Cloning, expression and purification of CT-Rv3868^{P336A}, CT-Rv3868^{T338A}, CT-Rv3868^{K340A}, CT-Rv3868^{R340A}</td>
<td>39</td>
</tr>
<tr>
<td>2.2.4 ATPase activity assays</td>
<td>42</td>
</tr>
<tr>
<td>2.2.5 Limited proteolysis and ESI-MS</td>
<td>43</td>
</tr>
<tr>
<td>2.2.6 Tryptophan and Tyrosine fluorescence</td>
<td>43</td>
</tr>
<tr>
<td>2.2.7 Circular Dichroism measurements</td>
<td>43</td>
</tr>
<tr>
<td>2.2.8 Analytical gel filtration</td>
<td>44</td>
</tr>
<tr>
<td>2.2.9 Dynamic light scattering</td>
<td>44</td>
</tr>
<tr>
<td>2.2.10 Analysis of Steady state nucleotide binding</td>
<td>44</td>
</tr>
<tr>
<td>2.2.11 Fluorescence quenching and calculation of Stern-Volmer co-efficients</td>
<td>45</td>
</tr>
<tr>
<td>2.2.12 Thermal and chemical denaturation</td>
<td>46</td>
</tr>
<tr>
<td>2.2.13 ANS binding</td>
<td>46</td>
</tr>
<tr>
<td>2.2.14 Glutaraldehyde cross-linking</td>
<td>47</td>
</tr>
<tr>
<td>2.2.15 Molecular modeling</td>
<td>47</td>
</tr>
<tr>
<td>2.2.15.1 Modeller</td>
<td>47</td>
</tr>
<tr>
<td>2.2.16 NTP docking</td>
<td>48</td>
</tr>
<tr>
<td>2.2.16.1 Autodock 3.0.5</td>
<td>50</td>
</tr>
<tr>
<td>2.2.17 Generation of hexameric model</td>
<td>52</td>
</tr>
<tr>
<td>2.2.17 Generation of hexameric model</td>
<td>52</td>
</tr>
<tr>
<td>2.2.19 Chaperone activity assays</td>
<td>52</td>
</tr>
<tr>
<td>2.3 Result and discussion</td>
<td>53</td>
</tr>
<tr>
<td>2.3.1 Sequence and phylogenetic analysis of Rv3868</td>
<td>54</td>
</tr>
</tbody>
</table>
2.3.2 Cloning, expression and purification of Rv3868 and CT-Rv3868

2.3.3 The hypothetical protein ORF Rv3868 of *M. tuberculosis* Encodes an ATPase

2.3.4 Effect of temperature and pH on activity

2.3.5 Molecular weight and subunit characterization

2.3.5.1 Effect of ATP on oligomerization

2.3.5.2 Effect of concentration and salt on Rv3868 oligomerization

2.3.6 Dynamic light scattering of Rv3868

2.3.7 Identification, Purification, and subunit Characterization of a Compact N-terminal Domain of Rv3868

2.3.8 Identification and characterization of the ATP-binding domain (CT-Rv3868)

2.3.8.1 C-Terminal Domain of Rv3868 displays cooperative activity

2.3.8.2 Heat induced ATPase activity of C-Terminal Domain

2.3.9 In silico modeling studies and analysis of the nucleotide binding site

2.3.10 Mutational analysis and identification of Arg429 as a sensor-arginine

2.3.11 Nucleotide binding affinity and binding site environment

2.3.12 Structural features of Rv3868 and its variants

2.3.12.1 Circular Dichroism

2.3.13 Denaturation studies on Rv3868

2.3.13.1 Thermal denaturation

2.3.13.2 Gdmcl and urea Induced denaturation

2.3.14 pH induced conformational change in Rv3868

2.3.15 N- and C-terminal domains are proximal and exhibit a relative conformational change on nucleotide binding

2.3.16 Rv3868 does not interact with CFP-10

2.3.17 Rv3868 does not exhibit chaperone-like activity

2.4 Conclusion

References
Chapter 3

Comparative structural analysis of Rv2557 and Rv2558, two hypothetical proteins from Mycobacterium tuberculosis found in the human granuloma during persistence

3.1 Introduction

3.2 Materials and Methods
 3.2.1 Strains, vectors and chemicals
 3.2.2 Phylogenetic tree, sequence analysis and secondary structure analysis
 3.2.3 Cloning of Rv2557 and Rv2558
 3.2.4 Over-expression and purification
 3.2.5 Circular Dichroism Measurements
 3.2.6 Fluorescence spectroscopy
 3.2.7 Thermal denaturation
 3.2.8 Urea and guanidinium chloride denaturation
 3.2.9 Analysis of the Denaturation curves
 3.2.10 Analytical gel filtration
 3.2.11 pH-dependent structural change
 3.2.12 Crystallization
 3.2.12.1 Preparation
 3.2.12.2 Crystallization trials
 3.2.12.3 Seeding Technique

3.2 Results and discussion
 3.3.1 In silico analysis of Rv2557 and Rv2558
 3.3.2 Nested PCR and cloning of genes
 3.3.3 Expression and purification of recombinant His₆-tagged-Proteins
 3.3.4 Molecular weight and subunit structure of Rv2557 and Rv2558
 3.3.5 Rv2557 and Rv2558 adopt a predominantly helical structure
 3.3.6 Tryptophan Fluorescence of Rv2557 and Rv2558
 3.3.7 Thermal Denaturation of Rv2557 and Rv2558
 3.3.8 Guanidine hydrochloride induced denaturation.