<table>
<thead>
<tr>
<th>CONTENTS</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>AN APPRECIATION</td>
<td></td>
</tr>
<tr>
<td>DECLARATION</td>
<td></td>
</tr>
<tr>
<td>SYNOPSIS</td>
<td>1</td>
</tr>
<tr>
<td>CHAPTER I GENOME ORGANIZATION AND EVOLUTION IN EUKARYOTES</td>
<td></td>
</tr>
<tr>
<td>TYPES OF DNA SEQUENCES IN PLANT GENOMES</td>
<td>17</td>
</tr>
<tr>
<td>- Palindromic sequences</td>
<td>17</td>
</tr>
<tr>
<td>- Satellite DNA sequences</td>
<td>18</td>
</tr>
<tr>
<td>- Repeated DNA sequences</td>
<td>19</td>
</tr>
<tr>
<td>- Dispersed repetitive sequences</td>
<td>20</td>
</tr>
<tr>
<td>- Multigene families</td>
<td>22</td>
</tr>
<tr>
<td>- Transposable elements/mobile sequences</td>
<td>26</td>
</tr>
<tr>
<td>- Single copy DNA sequences</td>
<td>30</td>
</tr>
<tr>
<td>GENOME ORGANIZATION IN HIGHER PLANTS</td>
<td>30</td>
</tr>
<tr>
<td>REPEITIVE DNA SEQUENCES AND THE GENOME IN EVOLUTION</td>
<td>34</td>
</tr>
<tr>
<td>- Models for repetitive DNA in evolution</td>
<td>36</td>
</tr>
<tr>
<td>- Functional status of repetitive DNA</td>
<td>39</td>
</tr>
<tr>
<td>- Dynamics of genome flux</td>
<td>40</td>
</tr>
</tbody>
</table>
CHAPTER II

BASE COMPOSITION OF DNAs OF FOUR VIGNA SPECIES AND CAJANUS CAJAN

INTRODUCTION 64

MATERIALS AND METHODS 65
- Seeds and their germination 65
- Chemicals and enzymes 66
- Extraction of DNAs 66
- Criteria of purity of DNAs 68
- Thermal denaturation 70
- High resolution thermal denaturation or fine melting 71
- Isopycnic centrifugation in CsCl 72
- High Pressure Liquid Chromatography (HPLC) 74

RESULTS 75
- Thermal denaturation 75
- Isopycnic centrifugation in neutral CsCl 80
- HPLC analysis of DNAs 80
DISCUSSION

- Thermal denaturation studies reveal similarities among the Vigna DNAs...
- An unequal distribution of m^5C in the main band or satellite DNAs...

REFERENCES

CHAPTER III

REASSOCIATION KINETICS OF DANS OF VIGNA UNGUICULATA AND CAJANUS CAJAN

INTRODUCTION

MATERIALS AND METHODS

- DNA sources and isolation of DNA
- Reassociation of DNA
- Isolation and sizing of repetitive DNA duplexes

RESULTS

- Non linear least squares regression analyses of DNA reassociation kinetics data
- Estimation of repetitive DNA content using S1 nuclease
- Size distribution of S1 nuclease resistant repetitive DNA duplexes

DISCUSSION

REFERENCES
CHAPTER IV REPETITIVE DNA HOMOLOGIES AMONGST THE DNAS OF FOUR VIGNA SPECIES AND CAJANUS CAJAN

INTRODUCTION 126

MATERIALS AND METHODS 128
- Germination of seeds 128
- Extraction, shearing, sizing and reassociation of unlabelled DNA 128
- Isolation of repetitive DNA of cowpea 128
- In vitro 32P labelling of DNA 128
- Sizing of labelled DNA 129
- Counting of radioactivity 130
- Homologous and heterologous hybridization 130
- Use of total, sheared cowpea DNA as tracer 131
- Use of isolated repetitive DNA of cowpea as tracer 132

RESULTS 135
- Self reassociation of tracer DNA 135
- Use of labelled, total cowpea DNA as tracer 135
- Use of labelled, isolated repetitive DNA of cowpea as tracer 140

DISCUSSION 147

REFERENCES 149
CHAPTER V
RESTRICTION ENDONUCLEASE CLEAVAGE
PATTERNS OF THE DNAs OF FOUR VIGNA
SPECIES AND CAJANUS CAJAN

INTRODUCTION 152

MATERIALS AND METHODS 153
- Chemicals and materials 153
- Enzymes 154
- Elution of high molecular weight DNA 154
- Restriction endonuclease digestions and agarose gel electrophoresis 156
- Southern blotting 156
- Isolation and nick-translation of Cot 1.0 x 10^-1 M.s. DNA 160
- Southern Hybridization 161

RESULTS 162
- Standardization of DNA elution from Agarose gels 162
- Restriction endonuclease analyses of plant DNAs 164
- Methylation status of the five plant DNAs 170

DISCUSSION 171

REFERENCES 174

CHAPTER VI
ANALYSES OF THE TOTAL SEED GLOBULINS OF FOUR VIGNA SPECIES

INTRODUCTION 181
MATERIALS AND METHODS

- Seeds
- Chemicals and reagents
- Rabbits for immunological work
- Preparation of defatted, acetone dry seed meals
- Extraction of globulins
- Protein estimations
- Polyacrylamide gel electrophoresis
- Preparation of DVS activated sepharose beads
- Preparation of antigen and antibody affinity matrices
- Purification of cowpea globulin IgGs from rabbit serum by antigen affinity chromatography
- Labelling of cowpea globulins by 125I
- Antigenicity of cowpea globulins
- Ouchterlony double diffusion
- Quantitative immunoassay

RESULTS

- Electrophoretic analyses of seed globulins of Vigna plant species
- Immunochemical characterization of cowpea seed globulins
- Comparative Ouchterlony double diffusion
- Quantitative immunoassay of seed globulins of the Vigna species
(vii)

DISCUSSION

- Antigenicity studies of cowpea globulins suggest biotechnological applications 205

- Taxonomic status of the Vigna plants as species of genus Vigna is justified 208

REFERENCES 210

CHAPTER VII GENERAL DISCUSSION 213

- The four Vigna species show enough homology/relatedness to be considered as species of the same genus Vigna 213

- Despite overall similarities, cowpea can be distinguished from the other three Vigna species by virtue of some striking features of its DNA 216

- Perspectives 218

- References 220

CURRICULUM-VITAE AND REPRINTS OF PUBLISHED PAPERS