LIST OF FIGURES

Fig. 1.1: Contribution of mountain glaciers to sea level rise

Fig. 2.1: The relationship between glaciers and latitude, shown along a line from Alaska to the tip of South America

Fig. 2.2: White areas show ice sheets and other glaciers around the world. The white spots in the oceans are islands where glaciers are found

Fig. 2.3: Distribution of glaciers along the Himalaya

Fig. 2.4: Shows accumulation and ablation mass balance for a year

Fig. 2.5: The tropics and their delimitations from a glaciological point of view, and the distribution of the glacier areas by country

Fig. 2.6: A schematic comparison of inner tropical and outer tropical glacier regimes with those of the mid latitudes

Fig. 2.7: Modelled mass balance profiles (A) Mid Latitude, (B) Subtropical and (C) Tropical conditions. X-axis represents the mass balance and Y-axis represents the elevation difference

Fig. 2.8: Mean annual specific net balance throughout the world

Fig. 2.9: Mean cumulative specific net balance throughout the world

Fig. 3.1: Location map of the Chhota Shigri glacier

Fig. 3.2: Longitudinal profile of the Chhota Shigri glacier

Fig. 3.3: Geomorphological map of the Chhota Shigri glacier

Fig. 3.4: Geological map of the area around Chhota Shigri Glacier

Fig. 4.1: Effect of stake type on measured ablation; wooden poles are the most reliable as compared to steel, plastic and aluminium poles

Fig. 4.2: Distribution of stake network throughout the glacier

Fig. 4.3: Different methods for joining two individual stakes (a) By rubber hose (b) By clamp (c) By metallic wire

Fig. 4.4: Pieces of stake falls freely during the ablation season

Fig. 4.5: Example of stake no IX that was installed in 2006

Fig. 4.6: Diagram of the portable steam driven drill designed by Heucke

Fig. 5.1: Stake network on the Chhota Shigri glacier, 2002
Fig. 5.2: Specific ablation at different altitude during 2002 – 2003
Fig. 5.3: Stake network on the Chhota Shigri glacier, 2003
Fig. 5.4: Density variations in accumulation pits at different altitude
Fig. 5.5: Specific annual mass balance of Chhota Shigri glacier (2002 - 2003)
Fig. 5.6: (a), (b) & (c): Specific ablation during 2003 – 2004, measured at different dates.
Fig. 5.7: Stake network on the Chhota Shigri glacier, 2004
Fig. 5.8: Density variation in pits at different altitudes
Fig. 5.9: Specific annual mass balance of Chhota Shigri glacier (2003 – 2004)
Fig. 5.10: Specific ablation of the Chhota Shigri Glacier at different altitude (2004 -2005)
Fig. 5.11: Stake network on the Chhota Shigri glacier, 2005
Fig. 5.12: (a), (b) & (c): Density variations in accumulation pits at different altitude
Fig. 5.13: Specific annual mass balance of the Chhota Shigri glacier (2004 – 2005)
Fig. 5.14: Specific ablation at different altitude during 2005 – 2006
Fig. 5.15: Stake network on the Chhota Shigri glacier, 2006
Fig. 5.16 a, b &c: Density variations in accumulation pits at different altitude
Fig. 5.17: Specific annual mass balance of Chhota Shigri glacier (2005 – 2006)
Fig. 5.18: Specific annual ablation at different altitude (2006 -2007)
Fig. 5.19(a) & (b): Density variations in accumulation pits at different altitude
Fig. 5.20: Specific annual mass balance of Chhota Shigri glacier (2006 – 2007)
Fig. 5.21: Five years of mass balance as a function of altitude derived from the the field measurements
Fig. 5.22: Relationship between AAR and ELA
Fig. 5.23: ELA and distribution of ablation pattern throughout the glacier in 2003
Fig. 5.24: ELA and distribution of ablation pattern throughout the glacier in 2004
Fig. 5.25: ELA and distribution of ablation pattern throughout the glacier in 2005
Fig. 5.26: ELA and distribution of ablation pattern throughout the glacier in 2006
Fig. 5.27: ELA and distribution of ablation pattern throughout the glacier in 2007
Fig. 5.27: ELA and distribution of ablation pattern throughout the glacier in 2007
Fig. 5.28: IRS LISS III image of August 2006, showing areas around the Spiti valley