CONTENTS

Acknowledgement (i-iv)

List of Abbreviations

Common Abbreviations v
Names of Genes and Gene Products vi

I. Introduction and Review of literature 1

I.1. Biology of Telomeres and Telomerase 2
I.2. Telomeres, Telomerase and Cancer 9
I.3. Biology of Human Telomerase RNA 18
I.4. Ribozyme Biology 39
I.5. Telomerase as a Therapeutic Target 43
I.6 Objectives of the Present Study 46

II. Materials and Methods 48

II.1 Materials Used for Routine work 54

II.2 Methods

II.2.1. Preparation of Competent Bacterial Cells 54
II.2.2. Transformation of Plasmid DNA in E.coli Cells 54
II.2.3. Isolation of Plasmid DNA (Mini Prep) 54
II.2.4. Plasmid Isolation (Midi Preparation) 55
II.2.5. Restriction Digestion of Plasmid DNA 56
II.2.6. De-phosphorylation of the Vectors 56
II.2.7. Ligation of Inserts in Vectors. 57
II.2.8. Polymerase Chain Reaction 57
II.2.9. Reverse Transcription –PCR 58
II.2.10. Sanger’s di-Deoxy Sequencing of 59
Cloned DNA Template
II.2.11. Automated DNA Sequencing 60
II.2.12. Designing of Ribozyme Against Telomerase RNAs

II.2.13. *In vitro* Run Off Transcription

II.2.14. Column Purification and Percentage Incorporation Radioactive label

II.2.15. Freeze Thaw method of Purification of DNA from Agarose gels

II.2.16. Genomic DNA Isolation

II.2.17. Total RNA Isolation

II.2.18. Trypsinizing and Sub Culturing Cells from Monolayer

II.2.19. Freezing Human Cells Grown in Monolayer Culture

II.2.20. Thawing and Recovering Human Cells.

II.2.21. Splitting Cells in to Fresh Flasks

II.2.22. Determining the Viability of Cells

II.2.23. Transfection of Cloned Vectors in Mammalian Cells

II.2.24. Selection of Stable Transformants

II.2.25. Northern Blotting

II.2.27. Colony Blotting

II.2.28. Slot Blotting

II.2.29. Fluorescence Activated Cell Sorter (FACS) Analysis

II.2.30. Telomere Repeat Amplification Protocol (TRAP)

II.2.31. Differential Display PCR

II.2.32. Reverse Northern Blotting

II.2.33. 2D Gel Electrophoresis and Mass Spectrometer
III. Results and Discussions

III. 1. Designing of Ribozyme against hTR
III.1.1. Designing Ribozyme and Visualizing Secondary Structure of Human Telomerase RNA (hTR) 79
III.1.2. Folding parameters 79
III.1.3. Single Stranded Regions in Multiple Foldings of hTR 80
III.1.4. RNA Fold Finds Conserved Secondary Structures of hTR 83
III.1.5. Folding of Ribozyme appended with hTR sequence 83
III.1.6. Discussion 100

III. 2. Cloning of Ribozymes and hTR
III.2.1. Cloning of Ribozyme under T7 Promoter (pStuI vector) 101
III.2.2. Ribozyme Cloning and Sequencing 101
III.2.3. Cloning of Human Telomerase RNA Component 106
III.2.4. In vitro Cleavage by the Designed Ribozyme 106
III.2.5. Cloning of Ribozyme in Mammalian Expression Vector 111
III.2.6. Cloning and Screening of Ribozyme 111
III.2.7. Discussion 115

III. 3. Expression of Ribozyme and its Effect on Cells
III.3.1. Transfection, Selection and Ribozyme Expression in HeLa Cells 117
III.3.2. Analysis of cellular phenotype and cell cycle 117
III.3.3. Reduction of Telomerase RNA level in Ribozyme Expressing Cells 127
III.3.4. Reduction of Telomerase Activity in Ribozyme Expressing Cells 130
III.3.5. Reduction of Telomere Length in Ribozyme Expressing Cells 130
III.3.6. Discussion 134

III. 4. Transcription Profiling of Transfectants
III. 4.1. Analysis for Differentially Expressed Genes 137
III.4.2. Reverse Northern Blotting, Sequencing and *In silico* Analysis of Differentially Expressed Genes.

III. 4. 3. Discussion.

III. 5. **Proteomic Alterations in Transfectants**

III.5.1. Proteomic Profiling of Transfected Cells
156
III.5.2. Expression of Ribozyme Alters Proteomic Profile of Stable Transfectants.
156
III.5.3. Discussion
164

III.6. **Future Prospects**
168

IV. **Summary and Conclusions**
169-171

V. **Bibliography**
172-187