RESEARCH ENVISAGED

Although there are number of antimalarial drugs but emergence of drug resistant strains of the malarial parasites has limited their therapeutic usefulness. There is dire need for the new and effective antimalarial drugs and alternative approaches which may not lead to the drug resistance.

Therefore, it was envisaged to make use of Polymer-linked combination therapy of two antimalarial drugs: primaquine and dihydroartemisinin, used as tissue schizontocidal and blood schizontocidal, respectively. The drug conjugates were proposed to be developed into nanoparticles formulation to increase their uptake by hepatocytes and to achieve targeted drug delivery.

The technical approach for designing Polymer-linked combination drug therapy having desired physicochemical properties is shown in Figure 7.

![Figure 7: Technical Approach for Designing Polymer - linked Combination Drug Therapy.](image)

The polymer backbone will be of polyphosphazene. Drug A and Drug B attached to the polymeric backbone and the physicochemical properties are to be monitored through different substituents to have the desired drug release profile of the Polymer-linked drug delivery systems.
RESEARCH ENVISAGED

Therefore, it is assumed that the proposed approach of antimalarial polymer-linked combined drug delivery system will not only eliminate parasites from the blood but also deliver the antimalarial drug at its localized site. This will ultimately result in the total elimination of the parasite from the blood as well as tissue and will overcome the emergence of drug resistance for radical cure of malaria.