Contents

1. Introduction 1
 A: Phenomena of glass transition .. 1
 A.1 Classification of solids ... 1
 A.2 Introduction to glass science 4
 A.3 Salient features of glass transition 7
 A.4 Thermodynamics of glass ... 10
 A.5 Structural Relaxation ... 14
 A.5.1 Volume Relaxation .. 14
 A.5.2 Enthalpy Relaxation ... 16
 A.6 Strong and Fragile nature of liquids 17
 A.7 Secondary relaxation process in glassy matrix 19
 A.8 Mode coupling Theory ... 21
 A.9 Various types of glass .. 22
 A.10 Orientationally disordered crystals 23
 B: Basic principle of dielectrics 25
 B.1 Definition of polarization .. 25
 B.2 Mechanism of polarization 25
 B.3 Non-Polar Dielectrics: Clausius Mossotti and Lorentz-Lorenz Eq. 27
 B.4 Polar Dielectrics: The Debye Eq. and Mossotti catastrophe 29
 B.5 Onsager's equation and Kirkwood-Frohlich equation 30
 B.6 Dielectric Relaxation ... 31
2. Experimental Methods

2.1: Differential Scanning Calorimetry Measurements.

2.1.1: Description of DSC Set-up

2.1.2: Calibration of DSC

2.1.3: Procedure For the Determination of Transition Temperatures

2.2: Dielectric Relaxation Measurements

2.2.1: Bridge Technique

2.2.2: D.C. step - response Technique

2.2.3: Description of Dielectric Set-Up

2.2.4: Procedure for the Calculation of ε' and ε''

2.3: X-ray diffraction

2.4: References

3. Relaxation dynamics of orientationally disordered plastic crystals: Effect of dopants

3.1: Experiment

3.2: Results

3.2.1: Effect of dopants on the dielectric behavior of PCNB

3.2.2: Effect of dopants on the dielectric behavior of other hexasubstituted
benzenes

3.2.3: Effect of dopants on the dielectric behavior of cyanoadamantane

3.3: Discussion

3.3.1: Dielectric spectra and thermal behavior of neat samples

3.3.2: Effect of dopants on the \(\alpha \)-process

3.4: Conclusions

3.5: References

4. Study of secondary relaxation in some disordered (plastic) crystals

4.1: Experiment

4.2: Results

4.2.1: Isocyanocyclohexane (ICNCH) and cyanocyclohexane (CNCH)

4.2.2: 1-cyanoadamantane (CNADM)

4.2.3: Study of JG relaxation of the samples in glassy O-terphenyl (OTP) matrix

4.3: Discussion

4.3.1: Secondary (or \(\beta \)-)relaxation

4.3.2: Primary (or \(\alpha \)-)relaxation

(i) Dielectric strength (\(\Delta \varepsilon \))

(ii) Fragility

4.4: Conclusions

4.5: References

5. Dielectric and calorimetric study of orientationally disordered phases in two unusual two-component systems

5.1: Experiment

5.2: Results

6.1: Experiment... 159

6.2: Results... 161

6.2.1: Pure materials..................................... 162

6.2.2: CHXOL-NPOL binary system...................... 165

6.2.3: CNCH-CHC binary system........................ 174

6.3: Discussion.. 181

6.3.1: α'-process in cyclohexyl derivatives........... 181

6.3.2: S_I phase in CHXOL-NPOL binary system.......... 183

6.3.2.1: Primary (or $\alpha-$) relaxation.................. 184

6.3.2.2: Secondary (β' – and $\beta-$) relaxation...... 185

6.3.3: S_I phase in CNCH-CHC binary system............. 186

6.3.3.1: Primary (or $\alpha-$) relaxation.................. 186

6.3.3.2: Secondary (or $\beta-$) relaxation................ 187

6.4: Conclusions.. 188

6.5: References.. 188
7. Dielectric and calorimetric study of an extraordinary two-component plastic crystal: cyclohexanol – cycloheptanol 194
7.1: Experiment. ... 195
7.2: Results. ... 195
7.2.1: CHXOL-CHPOL binary system. 195
7.3: Discussion .. 206
7.3.1: S_T phase in CHXOL-CHPOL binary system: 206
7.3.1.1: Primary (or $\alpha-$) relaxation 207
7.3.1.2: Secondary ($\beta-$ and $\gamma-$) relaxation: 208
7.4: Conclusions .. 209
7.5: References ... 209

8. Summary and Scope for further work 213
8.1: Summary of the work ... 213
8.2: Scope for further work .. 219