LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Schematic of IC process</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>IC with RP patterns</td>
<td>6</td>
</tr>
<tr>
<td>1.3</td>
<td>Classification of RPT</td>
<td>8</td>
</tr>
<tr>
<td>2.1</td>
<td>Schematic of PM route</td>
<td>14</td>
</tr>
<tr>
<td>2.2</td>
<td>Microstructure of DB of Mg/Al</td>
<td>16</td>
</tr>
<tr>
<td>2.3</td>
<td>Principle steps in IC process</td>
<td>28</td>
</tr>
<tr>
<td>2.4</td>
<td>Process of fabricating wax pattern</td>
<td>29</td>
</tr>
<tr>
<td>2.5</td>
<td>Lead time comparison for producing different types of pattern</td>
<td>31</td>
</tr>
<tr>
<td>2.6</td>
<td>Approaches used as RP solutions in RIC</td>
<td>33</td>
</tr>
<tr>
<td>2.7</td>
<td>Flow chart of feedstock filament development</td>
<td>39</td>
</tr>
<tr>
<td>2.8</td>
<td>Developed wire with specimens</td>
<td>40</td>
</tr>
<tr>
<td>4.1</td>
<td>Head components of uPrint-SE</td>
<td>52</td>
</tr>
<tr>
<td>4.2</td>
<td>Insertion of cartridge into bay</td>
<td>53</td>
</tr>
<tr>
<td>4.3</td>
<td>Schematic of FDM system</td>
<td>54</td>
</tr>
<tr>
<td>4.4</td>
<td>Methodology used for experimentation</td>
<td>55</td>
</tr>
<tr>
<td>4.5</td>
<td>Melt flow indexer</td>
<td>56</td>
</tr>
<tr>
<td>4.6</td>
<td>(a) Mixture prepared and (b) Filament development on single screw extruder</td>
<td>58</td>
</tr>
<tr>
<td>4.7</td>
<td>Swelling of extruded filament</td>
<td>59</td>
</tr>
<tr>
<td>4.8</td>
<td>Composite FDM feedstock filament developed</td>
<td>59</td>
</tr>
<tr>
<td>4.9</td>
<td>3-D view of benchmark cube</td>
<td>60</td>
</tr>
<tr>
<td>4.10</td>
<td>Slicing of cube on Catalyst-EX® software</td>
<td>61</td>
</tr>
<tr>
<td>4.11</td>
<td>(a) Prototyping of cube and (b) prototypes of different volumes and densities</td>
<td>62</td>
</tr>
<tr>
<td>4.12</td>
<td>Barrel finisher</td>
<td>64</td>
</tr>
<tr>
<td>4.13</td>
<td>(a) Prototyping of casting tree parts using ABS-OEM and</td>
<td>66</td>
</tr>
</tbody>
</table>
(b) prototypes tree parts

4.14 Resulting casting tree 67
4.15 Clay coated casting tree 67
4.16 (a) Ceramic coating and (b) ceramic moulds prepared 68
4.17 Ceramic moulds after autoclaving 69
4.18 (a) Melting Al-6063 and (b) final castings 70
4.19 Procedure of Taguchi’s DOE technique 73
4.20 P-diagram for DOE 74
4.21 Surface roughness measurement using Mitutoyo-SJ-210 (ISO 1997) tester 81

4.22 Measurement of dimensions of casting 82
4.23 Micro-hardness testers 84
4.24 Pin-on-disc tribo-meter 86
4.25 Real contact between pin and wear disc 87
5.1 S/N ratio effect plot for surface roughness 94
5.2 Percentage contribution chart for surface roughness 95
5.3 (a) Microstructure of experiment number-1, (b) number-2 and (c) number-3 respectively 97
5.4 S/N ratio effect plot for dimensional accuracy 100
5.5 Percentage contribution chart for dimensional accuracy 100
5.6 Nylon-6 ash spilled out of cavity 101
5.7 S/N ratio effect plot for hardness 105
5.8 Percentage contributions of factors on hardness of castings 109
5.9 S/N ratio effect plot for wear 113
5.10 Percentage contributions of factors on wear of castings 115
6.1 Description for sample selection 119
6.2 Mounting of samples in Bakelite 119
6.3 Micrograph of Exp. No. 1 119
6.4 Micrograph of Exp. No. 2 120
6.5 Micrograph of Exp. No. 3 120
6.6 Micrograph of Exp. No. 4 120

xiii
6.7 Micrograph of Exp. No. 5
6.8 Micrograph of Exp. No. 6
6.9 Micrograph of Exp. No. 7
6.10 Micrograph of Exp. No. 8
6.11 Micrograph of Exp. No. 9
6.12 Micrograph of Exp. No. 10
6.13 Micrograph of Exp. No. 11
6.14 Micrograph of Exp. No. 12
6.15 Micrograph of Exp. No. 13
6.16 Micrograph of Exp. No. 14
6.17 Micrograph of Exp. No. 15
6.18 Micrograph of Exp. No. 16
6.19 Micrograph of Exp. No. 17
6.20 Micrograph of Exp. No. 18
6.21 SEM (make: FEI Netherlands)
6.22 SEM graph (1) and EDS plot (2) of Exp. No. 1
6.23 SEM graph (1) and EDS plot (2) of Exp. No. 2
6.24 SEM graph (1) and EDS plot (2) of Exp. No. 3
6.25 SEM graph (1) and EDS plot (2) of Exp. No. 4
6.26 SEM graph (1) and EDS plot (2) of Exp. No. 5
6.27 SEM graph (1) and EDS plot (2) of Exp. No. 6
6.28 SEM graph (1) and EDS plot (2) of Exp. No. 7
6.29 SEM graph (1) and EDS plot (2) of Exp. No. 8
6.30 SEM graph (1) and EDS plot (2) of Exp. No. 9
6.31 SEM graph (1) and EDS plot (2) of Exp. No. 10
6.32 SEM graph (1) and EDS plot (2) of Exp. No. 11
6.33 SEM graph (1) and EDS plot (2) of Exp. No. 12
6.34 SEM graph (1) and EDS plot (2) of Exp. No. 13
6.35 SEM graph (1) and EDS plot (2) of Exp. No. 14
6.36 SEM graph (1) and EDS plot (2) of Exp. No. 15
6.37 SEM graph (1) and EDS plot (2) of Exp. No. 16
6.38 SEM graph (1) and EDS plot (2) of Exp. No. 17
6.39 SEM graph (1) and EDS plot (2) of Exp. No. 18
6.40 X-ray diffraction meter
6.41 XRD graph of Exp. No. 1
6.42 XRD graph of Exp. No. 2
6.43 XRD graph of Exp. No. 3
6.44 XRD graph of Exp. No. 4
6.45 XRD graph of Exp. No. 5
6.46 XRD graph of Exp. No. 6
6.47 XRD graph of Exp. No. 7
6.48 XRD graph of Exp. No. 8
6.49 XRD graph of Exp. No. 9
6.50 XRD graph of Exp. No. 10
6.51 XRD graph of Exp. No. 11
6.52 XRD graph of Exp. No. 12
6.53 XRD graph of Exp. No. 13
6.54 XRD graph of Exp. No. 14
6.55 XRD graph of Exp. No. 15
6.56 XRD graph of Exp. No. 16
6.57 XRD graph of Exp. No. 17
6.58 XRD graph of Exp. No. 18
7.1 Histogram for castings
7.2 Normal probability curve for castings
7.3 Run chart for measured values
7.4 Best fitted curve for normally distributed data
8.1 Surface roughness vs. volume of FDM pattern plot
8.2 Dimensional accuracy vs. barrel finishing media weight plot
8.3 Hardness vs. density of FDM pattern plot
8.4 Wear vs. volume of FDM pattern