SUMMARY OF CONCLUSIONS
In brief, the following are the important conclusions arrived at in this study.

1. The immersed weight longshore sand transport rate \(I_1 \), is directly proportional to the first power of the longshore component of wave energy flux per unit beach length, \(P_1 \), by a relatively constant proportional coefficient [Equation (4) and (19)].

2. Relationship between \(I_1 \) and \(P_1 \) is independent of sand size [Equation (4) and (19)].

3. The bed load transport in the surf zone is more important than the suspended load at these locations as well.

4. Relationship between \(I_1 \) and \(P_1 \) is independent of beach slope (\(\tan B \)).

5. As long as the transport is principally as bed load, larger grain sizes will move alongshore faster than somewhat finer sizes. There will be a limit to this increase with increasing grain size, (Kanth and Asthana, 1982).

6. Grain size fraction of \(\phi 2.25 \), contributes maximum to the longshore sand volume transport rate, (Kanth and Asthana, 1980).

7. Direct computation of diffusion rate, \(E_1 \), from wave parameters is not valid under all the conditions [Equation (20)].