List of Figures

Figure 1.1. TEM micrographs (A-C) and SAD (D) recorded from Fig. 1.1C of gold powder (commercially available as Swarna Bhasma manufactured and supplied by Shree Vaidyanath, Ayurved Bhawan, Nagpur, India). These figures (A-C) clearly show the spherical gold nanoparticles as evident from Fig. D, which is characteristic of fcc gold. This gold powder (in Sanskrit Swarna meaning gold) is commonly used as one of the potent traditional formulations in different Ayurvedic food supplements and medicines.

Figure 1.2. Density of states for metal and semiconductor nanocrystals. In each case, the density of states is discrete at the band edges. The Fermi level is in the center of a band in a metal, and so kT may exceed the electronic energy level spacing even at room temperatures and small sizes. In contrast, in semiconductors, the Fermi level lies between two bands, so that the relevant level spacing remains large even at small sizes. The HOMO–LUMO gap increases in semiconductor crystals of smaller size. [Source: Ref. 10]

Figure 2.1. Picture of conical flasks containing Fusarium oxysporum biomass before (A) and after (B) exposure to AuCl₄⁻ ions for 48 h.

Figure 2.2. UV-Vis spectra recorded with respect to time after the reaction of 1mM HAuCl₄ solution with 20 g Fusarium oxysporum wet biomass for 48 h.

Figure 2.3. XRD pattern recorded from the thin film prepared by drop coating the gold nanoparticle solution on a Si(111) wafer. The principal Bragg reflections are identified.

Figure 2.4. Au 4f core level spectra recorded from the drop coated gold nanoparticle solution on a Si(111) substrate. The two spin-orbit components are shown in the Figure.

Figure 2.5. FTIR spectrum recorded from a drop-coated film of an aqueous solution incubated with Fusarium oxysporum and treated with AuCl₄⁻ ions for 48 h.
Figure 2.6. TEM micrographs recorded from two different regions of a drop-coated film of an aqueous solution incubated with *Fusarium oxysporum* and treated with AuCl₄⁻ ions for 48 h.

Figure 2.7. Picture of conical flasks containing *Fusarium oxysporum* biomass before (A) and after (B) exposure to Ag⁺ ions for 72 h.

Figure 2.8. UV-Vis spectra recorded with respect to time after the reaction of 1 mM AgNO₃ solution with 20 g *Fusarium oxysporum* wet biomass for 72 h.

Figure 2.9. (A) TEM micrograph recorded from a drop-coated film of an aqueous solution incubated with *Fusarium oxysporum* and reacted with Ag⁺ ions for 72 h. The scale bar corresponds to 100 nm. (B) Selected area of electron diffraction pattern recorded from one of the silver nanoparticles shown in Figure (A). The diffraction rings have been indexed with reference to fcc silver.

Figure 2.10. XRD pattern recorded from the thin film prepared by drop coating the silver nanoparticle solution on a Si(111) wafer. The principal Bragg reflections are identified. The inset shows the (111) Bragg reflection for a silver nanoparticle film grown by reaction of Ag⁺ ions with *Fusarium oxysporum*. The solid line is a Lorentzian fit to the data and has been used to estimate the silver nanoparticles size.

Figure 2.11. Ag 3d core level spectra recorded from a drop coated silver nanoparticle solution on Si(111) substrate. A single spin-orbit pair is shown in the Figure.

Figure 2.12. FTIR spectrum recorded from a drop-coated film of an aqueous solution incubated with *Fusarium oxysporum* and reacted with Ag⁺ ions for 72 h. The amide bands are identified in the Figure.

Figure 2.13. The UV-Vis absorption spectrum in the low wavelength region recorded from the reaction medium of silver nanoparticles 72 h after commencement of the reaction.

Figure 2.14. UV-Vis spectra of the reaction mixtures of gold nanoparticles by exposing 5 g, 10 g, 20 g and 30 g respectively of wet biomass of *Fusarium oxysporum* to aqueous solution of 1 mM HAuCl₄.
spectra have been shifted vertically for clarity.

Figure 2.15. (A-D) TEM micrographs recorded from gold nanoparticle solutions synthesized by exposing 5 g, 10 g, 20 g and 30 g wet biomass of *Fusarium oxysporum* to aqueous solution of 1 mM HAuCl₄.

Figure 2.16. UV-Vis spectra of the reaction mixtures of silver nanoparticles by exposing 5 g, 10 g, 20 g and 30 g respectively of wet biomass of *Fusarium oxysporum* to aqueous solution of 1 mM AgNO₃.

Figure 2.17. UV-Vis spectra of gold nanoparticle-fungus reaction mixture after 48 h of reaction at higher pH (A) and at lower pH (B).

Figure 2.18. UV-Vis spectra of silver nanoparticle-fungus reaction mixture after 72 h of reaction at higher pH (A) and at lower pH (B).

Figure 2.19. FTIR spectra recorded from a drop-coated film of nanoparticle-fungus reaction mixture after 48 h of reaction (A) at pH higher than 12 and (B) at pH less than 2.

Figure 2.20. UV-Vis spectra of Au-Ag alloy nanoparticles, exhibiting increasing Ag mole fraction with time, after the reaction of a mixture of a solution containing 1 mM HAuCl₄ and 1 mM AgNO₃ with 60 g *Fusarium oxysporum* wet biomass for 96 h. The inset shows test tubes (1-4) containing these diluted colloidal solution.

Figure 2.21. UV-Vis absorption position of the surface plasmon maximum is plotted against the mole fraction of gold in Au-Ag bimetallic nanoparticles.

Figure 2.22. (A) Au 4f (B) Ag 3d core-level spectra recorded from a drop-coated Au-Ag nanoparticles solution on a Si(111) substrate. The two spin-orbit components are shown in the Figure of each element.

Figure 2.23. TEM images of Au-Ag nanoparticles formed by reaction of a mixture of 1 mM HAuCl₄ and 1 mM AgNO₃, with 60 g *Fusarium oxysporum* wet biomass for 96 h.

Figure 2.24. The graph showing the change in wavelength with respect to time of the mixture of a solution of 1 mM HAuCl₄ and 1 mM AgNO₃ after the treatment with different amount of *Fusarium oxysporum*
wet biomass viz. 30 g, 40 g, 50 g and 60 g.

Figure 3.1. UV-Vis spectra recorded as a function of time of reaction of 1 mM aqueous solution of (A) HAuCl₄ and (B) AgNO₃ with *Thermomonospora* sp. biomass. The inset of respective Figures show a test tube of the gold (A) and silver (B) nanoparticle solution formed at the end of the reaction.

Figure 3.2. X-ray diffraction patterns recorded from (A) gold and (B) silver nanoparticles films deposited on a Si(111) wafer.

Figure 3.3. (A and B) TEM micrographs recorded from drop-cast films of the gold nanoparticle solution formed by the reaction of chloroauc acid solution with *Thermomonospora* sp. biomass for 120 h at different magnifications. (C) Particle size distribution histogram determined from the TEM micrograph shown in Fig B. (D) Selected area diffraction pattern recorded from the gold nanoparticles shown in Fig. B.

Figure 3.4. TEM micrograph recorded from drop-cast film of silver nanoparticle solution formed by the reaction of silver nitrate solution with *Thermomonospora* sp. biomass.

Figure 3.5. FTIR spectrum recorded from drop-cast films of (a) HAuCl₄ and (b) AgNO₃ solution after reaction with *Thermomonospora* sp. for 120 h. The amide I and II bands are identified in the Figure. The inset shows the native gel electrophoresis of aqueous protein extract obtained from *Thermomonospora* sp. mycelia (cells); 7.5 % (w/v) polyacrylamide slab gel, at pH 8.3.

Figure 3.6. (A) *Rhodococcus* sp. biomass after removal from the culture medium. (B) *Rhodococcus* sp. actinomycete cells after exposure to 10 mM aqueous solution HAUCL₄ for 24 h.

Figure 3.7. UV-Vis spectra recorded from biofilms of the *Rhodococcus* sp. biomass before (curve 1) and after exposure to 1 mM aqueous HAUCL₄ solution for 24 h (curve 2).

Figure 3.8. XRD pattern recorded from an Au nano-*Rhodococcus* biofilm deposited on a Si(111) wafer. The principal Bragg reflections are
Figure 3.9. (A-C) Representative TEM micrographs recorded at different magnifications from thin sections of stained *Rhodococcus* cells after reaction with AuCl_4^- ions for 24 h. (D) A particle size distribution histogram determined from the TEM image shown in Figure 3.9 C.

Figure 4.1. (A) UV-Vis spectra recorded from the aqueous 10 mM CdSO_4 solution as a function of time (in days) of addition of the fungal biomass. The inset shows test tubes containing CdSO_4 solution before (left) and after reaction with the fungal biomass for 12 days (right). (B) Fluorescence emission spectra recorded from the same solution used for UV-Vis measurements.

Figure 4.2. XRD pattern recorded from the CdS nanoparticle film deposited on a Si(111) wafer.

Figure 4.3. Bright field (A) and dark field (B) TEM pictures of CdS nanoparticles formed by reaction of CdSO_4 with the fungal biomass for 12 days. The inset of Figure (B) shows the selected area diffraction pattern recorded from one of the CdS nanoparticles shown in (A). The diffraction rings have been indexed with reference to hexagonal CdS.

Figure 4.4. (A) UV-Vis spectrum (left) and fluorescence emission spectrum (right) recorded from the aqueous 1 mM PbSO_4 solution of addition of the fungal biomass. (B) XRD pattern recorded from the PbS nanoparticle film deposited on a Si(111) wafer.

Figure 4.5. (A-D) TEM images of PbS nanoparticles at different magnifications recorded from *Fusarium oxysporum*-PbSO_4 reaction mixture. The inset of Figure (D) shows the selected area diffraction pattern of PbS nanoparticle. The diffraction rings have been indexed with reference to cubic PbS.

Figure 4.6. (A) UV-Vis spectrum (left) and fluorescence emission spectrum (right) recorded from *Fusarium oxysporum*-ZnSO_4 reaction mixture. (B) XRD pattern recorded from the ZnS nanoparticle film.
deposited on a Si(111) wafer. (C) TEM images of ZnS nanoparticles recorded from *Fusarium oxysporum-ZnSO₄* reaction mixture. (D) Selected area diffraction pattern of ZnS nanoparticle. The diffraction rings have been indexed with reference to zinc blende ZnS.

Figure 4.7. (A and B) TEM images of MnS nanoparticles at different magnifications recorded from *Fusarium oxysporum-MnSO₄* reaction mixture. The inset of Figure (B) shows the selected area electron diffraction pattern of MnS particle. The diffraction rings have been indexed with reference to hexagonal MnS. (C) XRD pattern recorded from the MnS nanoparticle film deposited on a Si(111) wafer. (D) UV-Vis spectrum (left) and fluorescence emission spectrum (right) of MnS nanoparticle solution.

Figure 4.8. (A) UV-Vis spectrum (left) and fluorescence emission spectrum of NiS nanoparticle solution. (B and C) TEM micrographs of NiS nanoparticles recorded from *Fusarium oxysporum-NiSO₄* reaction mixture at different magnifications. (D) XRD pattern recorded from the NiS nanoparticle film deposited on a Si(111) wafer.

Figure 4.9. (A) FTIR spectrum recorded from drop-cast films of the cadmium sulfide nanoparticle solution. The carbonyl stretch (1) and –N-H stretch (2) are identified in the Figure. (B) The native gel electrophoresis of aqueous protein extract obtained from *Fusarium oxysporum* mycelia; 10 % (w/v) polyacrylamide slab gel, pH 4.3.

Figure 5.1. XRD patterns recorded from (a) Au-Vert, (b) Au-SiO₂-FO (c) Au-SiO₂-Chem samples.

Figure 5.2. UV-Vis spectra recorded from (a) Au-SiO₂-Chem (b) Au-SiO₂-FO and (c) Au-Vert nanocomposites.

Figure 5.3. Influence of temperature on conversion, selectivity and acid product distribution in aerial oxidation of cyclohexane catalyzed by Au-SiO₂-FO. Reaction condition: Duration = 8 h, Air Pressure = 4.3 MPa, Stirring speed = 400 rpm.

Figure 5.4. Influence of oxygen concentration on conversion, selectivity and
acid product distribution in aerial oxidation of cyclohexane catalyzed by Au-SiO$_2$-FO in a solvent free condition. Reaction condition: Duration = 8 h (1st), 3 h 30 min (2nd), 2 h (3rd) and 2 h (4th), Temperature = 120 ºC, Air Pressure = 4.3 MPa (each time), Stirring speed = 400 rpm.

Figure 5.5. Influence of air pressure on conversion, selectivity and acid product distribution in the oxidation of cyclohexane catalyzed by Au-SiO$_2$-FO in a solvent free condition. Reaction condition: Duration = 6.5 h (2.07 MPa), 7 h (2.7 MPa) and 8 h (4.3 MPa), Temperature = 120 ºC, Stirring speed = 400 rpm.

Figure 5.6. Influence of concentration of Au-SiO$_2$-FO catalyst on conversion, selectivity and acid product distribution in aerial oxidation of cyclohexane. Reaction conditions: Duration = 8 h, Temperature = 120 ºC, Air Pressure = 4.3 MPa, Stirring speed = 400 rpm.

Figure 5.7. Influence of nano Au particle size on conversion, selectivity and acid product distribution in aerial oxidation of cyclohexane. Reaction conditions: Duration = 5 h (Au-SiO$_2$-Chem), 8 h (Au-SiO$_2$-FO) and 12 h (Au-Vert), Temperature = 120 ºC Air Pressure = 4.3 MPa, Stirring speed = 400 rpm.