List of Figures

1.3.1 Typical variations in phase constants (β) for dispersive and non-dispersive media .. 5

2.1.1 Two wire transmission line as two port network 10
2.1.2 Equivalent circuit model of transmission line of differential length dz .. 10
2.2.1 Non-linear transmission line representation with varactor diodes 14
2.2.2 Equivalent circuit model with variable capacitor 14
2.2.3 Considered non-linear transmission line in this thesis 15

3.2.1 Relationship between current and magnetic flux for linear and non-linear inductors. .. 22
3.2.2 Time domain signals applied for linear and non-linear inductor. 23
3.2.3 Variation of inductance with applied current. 24
3.2.4 Impedance of non-linear and linear inductors. 25
3.3.1 Non-linear capacitor constitutive relationships 27
3.3.2 Variation in capacitance for different non-linearities 28
3.3.3 Time domain variations of voltage and current 29
3.3.4 Impedance variations of non-linear capacitor 29
3.3.5 Changes in self resonating frequency with non-linearity 30

4.4.1 Unit cell of low-pass transmission line model 33
4.4.2 Unit cell of low-pass transmission line with non-linear capacitor 33
4.4.3 Lowpass equivalent circuit with state variables 34
4.4.4 Variation of capacitance with applied voltage 35
4.4.5 Gain of unit cell of lowpass transmission line model 36
4.4.6 Scattering matrices of unit cell 37
4.4.7 Complex propagation constant with non-linear capacitor 38
List of Figures

4.4.8 Impedance of non-linear capacitor 38
4.4.9 Unit cell of low-pass transmission line with non-linear inductors .. 39
4.4.10 Scattering matrices of the unit cell with inductor as non-linear ... 39
4.4.11 Complex propagation constant with series inductors as non-linear .. 40
4.4.12 Unit cell of low-pass transmission line with non-linear elements ... 41
4.4.13 Complex propagation constant with both elements as non-linear ... 42
5.2.1 Unit cell of highpass transmission line model with non-linear inductor .. 44
5.2.2 Scattering parameters for the unit cell of highpass equivalent circuit model with non-linear inductor 45
5.3.1 Unit cell of lowpass transmission line with Miller non-linearity inductor .. 46
5.3.2 Voltage gain of unit cell with inductive loading 47
5.3.3 Bloch impedance of the lowpass equivalent circuit with Miller inductive loading 48
5.3.4 Complex propagation constant for lowpass with Miller inductive loading .. 49
5.3.5 Unit cell of lowpass transmission line with Miller capacitive loading .. 49
5.3.6 Voltage gain of unit cell with Miller capacitive loading 50
5.3.7 Bloch impedance of unit cell of Miller capacitive loading ... 51
5.3.8 Complex propagation constant for lowpass Miller capacitive loading .. 51
5.3.9 Scattering matrices for the lowpass Miller non-linear capacitive loading .. 52
5.3.10 Highpass equivalent circuit with non-linear inductor Miller loading .. 53
5.3.11 Scattering matrices for highpass equivalent circuit with non-linear inductor Miller loading 54
List of Tables

3.1 Inversion of constitutive relationships of non-linear capacitors. 26