CHAPTER 4

FIXED POINT FOR A CLASS OF MAPPINGS
CHAPTER 4

FIXED POINTS FOR A CLASS OF MAPPINGS

4.1 Introduction

Let \(M \) be a closed convex subset of a Banach space \(X \) and \(f \) be a self mapping on \(M \) satisfying the condition

\[
||fx-fy|| \leq \alpha \max\{||x-y||, \frac{1}{2}[||x-fx|| + ||y-fy||]\}.
\]

\[
\frac{1}{2}[||y-fx|| + ||x-fy||]
\]

for \(0 < \alpha < 1 \) and \(x, y \in M \).

In this chapter we have first established a result on the existence of fixed points for the operator \(f \), satisfying (4.1.1). In proving the theorem, we have not assumed the space \(X \) to be either uniformly convex or reflexive. We have then given some results using the inequality (4.1.1). Finally, we have proved some fixed point theorems when \(f \) satisfies the following condition.

\[
||fx-fy|| \leq \max\{||x-y||, \frac{1}{2}[||x-fx|| + ||y-fy||]\}.
\]

\[
\frac{1}{2}[||x-fy|| + ||y-fx||]
\]

(4.1.2)

The results obtained by using inequality (4.1.2) generalize the results of Edelstein (1964), Browder and Petryshyn (1967) and Kirk (1969).
4.2 **Definition**

DEFINITION 1. A set M in a linear space is said to be star-shaped about a point $y \in M$ if for every $z \in M$ there is a non-negative number $t_z : 0 \leq t_z \leq \infty$ such that the set \{ $y + t_z | 0 \leq t \leq t_z$ \} is in M and the set \{ $y + t_z | t_z < t$ \} is outside of M.

4.3 **Fixed point theorems**

THEOREM 1. Let M be a closed convex subset of a Banach space X and f be a self mapping on M such that it satisfies (4.1.1) for all $x, y \in M$ and for some $0 \leq \alpha < 1$.

Let $x_0 \in M$, $t \in (0, 1)$ and $x_{n+1} = (1-t)x_n + tfx_n$ for each integer $n \geq 0$. If the sequence $\{x_n\}_{n=0}^{\infty}$ converges to a point u in M, then u is a unique fixed point of f.

PROOF. We have

$$||x_{n+1} - fu|| = ||(1-t)x_n + tfx_n - fu||$$

$$= ||(1-t)x_n + tfx_n - tfu + tfu - fu||$$

$$\leq ||(1-t)(x_n - fu)|| + ||t(fx_n - fu)||$$

$$\leq ||(1-t)||x_n - fu|| + t||fx_n - fu||.$$

By using (4.1.1) for $||fx_n - fu||$, we get
\[\|x_{n+1} - fu\| \leq (1-t)\|x_n - fu\| + t \max(\|x_n - u\|), \]
\[\frac{1}{2}[\|x_n - fx_n\| + \|u - fu\|], \]
\[\frac{1}{2}[\|x_n - fu\| + \|u - fx_n\|] \]
\[\leq (1-t)\|x_n - fu\| + t \alpha(\|x_n - u\| + \|x_n - fx_n\|) \]
\[+ \|u - fu\| \]. \quad (4.3.2) \]

Since \(\{x_n\} \) converges to \(u \) and \(x_{n+1} - x_n = t(fx_n - x_n) \), the sequence \(\{\|fx_n - x_n\|\}_{n=1}^{\infty} \) tends to zero. Therefore, letting \(n \to \infty \) in (4.3.2), we have

\[\|u - fu\| \leq (1-t)\|u - fu\| + \alpha t\|u - fu\| \]
\[\leq [1-(1-\alpha)t]\|u - fu\| \]
\[= \beta\|u - fu\|, \]

where \(\beta = [1-(1-\alpha)t] \in (0,1) \). Hence \(u = fu \). We now show the uniqueness of the fixed point. Suppose \(v \neq u \) be another fixed point of \(f \). Then we have from (4.1.1)

\[\|u - v\| = \|fu - fv\| \]
\[\leq \max(\|u - v\|, \frac{1}{2}[\|u - fu\| + \|v - fv\|]) \]
\[\frac{1}{2}[\|u - fv\| + \|v - fu\|]). \]
\[\leq \max(||u-v||, \frac{1}{2}[||u-v|| + ||u-v||]) \]

\[\leq \alpha ||u-v||, \]

which is impossible since \(\alpha < 1 \). Hence \(u = v \). This completes the proof.

THEOREM 2. Let \(X \) be a Banach space and let \(f \) be a mapping of \(X \) into itself. If there exists a mapping \(f_1 \) of \(X \) into itself which has a right inverse \(f_1^{-1} \) (i.e. \(f_1 f_1^{-1} = I \), the identity mapping) such that \(f_1^{-1} ff_1 \) satisfies the condition

\[||f_1^{-1} ff_1 x - f_1^{-1} ff_1 y|| \leq \max(||x-y||, \]

\[\frac{1}{2}[||x-f_1^{-1} ff_1 x|| + ||y-f_1^{-1} ff_1 y||], \]

\[\frac{1}{2}[||x-f_1^{-1} ff_1 y|| + ||y-f_1^{-1} ff_1 x||]) \]

(4.3.3)

for all \(x, y \in X \) and \(\alpha \in (0,1) \), then \(f \) has a unique fixed point.

PROOF. Since \(f_1^{-1} ff_1 \) satisfies (4.3.3) and \(X \) is a Banach space, \(f_1^{-1} ff_1 \) has a unique fixed point \(u \in X \).

Hence
\[f_1^u = f_1 f_1^{-1} f_1^u = f_1^u. \]

If \(v \in X \) is a fixed point of \(f \), then since

\[f_1^{-1} f_1 f_1^{-1} v = f_1^{-1} v, \]

we have \(f_1^{-1} v = u \). Therefore \(f_1 v \) is a unique fixed point of \(f \).

Theorem 3. Let \(f \) be a mapping of a Banach space \(X \) into itself satisfying the condition (4.1.1) for all \(x, y \in X \) and \(\alpha \in (0,1) \). For each positive integer \(n \), let \(a_n \in X \) be a solution of the equation \(u - fu = A_n \) (\(A_n \in X \)). If \(A_n \to 0 \) as \(n \to \infty \), then the sequence \(\{a_n\}_{n=1}^{\infty} \) converges to the solution of the equation \(u = fu \).

Proof. We have

\[\|a_n - a_m\| = \|a_n - fa_n + fa_n - fa_m + fa_m - a_m\| \]

\[\leq \|a_n - fa_n\| + \|fa_n - fa_m\| + \|fa_m - a_m\| \]

\[\leq \|A_n\| + \|A_m\| + \alpha \max\{\|a_n - a_m\|, \}

\[\frac{1}{2}[\|a_n - fa_n\| + \|a_m - fa_m\|], \]

\[\frac{1}{2}[\|a_n - fa_m\| + \|a_m - fa_n\|] \]
\[\leq ||A_n|| + ||A_m|| + \alpha \left(||a_n - a_m|| + ||a_n - fa_n|| + ||a_m - fa_m|| \right) \]

\[\leq ||A_n|| + ||A_m|| + \alpha ||a_n - a_m|| + \alpha ||A_n|| + \alpha ||A_m|| \]

implying

\[||a_n - a_m|| \leq \frac{1 + \alpha}{1 - \alpha} \left(||A_n|| + \frac{1 + \alpha}{1 - \alpha} ||A_m|| \right). \]

It follows therefore that \{a_n\} is a Cauchy sequence.

Hence it converges to a (say) of \(X \). Also

\[||a - fa|| = ||a - a_n + a_n - fa_n + fa_n - fa|| \]

\[\leq ||a - a_n|| + ||a_n - fa_n|| + ||fa_n - fa|| \]

\[\leq ||a - a_n|| + ||A_n|| + \alpha \max\{||a_n - a||, \frac{1}{2}(||a_n - fa_n|| + ||a - fa||)\} \]

\[\leq ||a - a_n|| + ||A_n|| + \alpha \left(||a - a_n|| + \frac{1}{2}(||a_n - fa_n|| + ||a - fa||) \right) \]

\[\leq ||a - a_n|| + ||A_n|| + \alpha \left(||a - a_n|| + \frac{1}{2}(||a_n - fa_n|| + ||a - fa||) \right) \]
\[\leq ||e_a|| + ||A_n|| + \alpha ||e_a|| + \alpha ||A_n|| + \alpha ||e_{fa}|| \]

implying

\[||e_{fa}|| \leq \frac{1+\alpha}{1-\alpha} ||e_a|| + \frac{1+\alpha}{1-\alpha} ||A_n|| \]

for any positive integer \(n \). Hence it follows that \(a = fa \) and this completes the proof.

Theorem 4. Let \(M \) be a closed bounded convex subset of a Banach space \(X \) and let \(K \) be a compact subset of \(M \). Suppose \(f : M \rightarrow M \) is a continuous mapping which satisfies (4.1.2) and that for each \(x \in M \)

We \(\{f^R_n\} \cap K \neq \emptyset \) (where \(\{f^R_n\} \) stands for weak closure of \(\{f_n^R\} \))

\[||y-fy|| \leq ||x-fx|| \] if \(y \in \text{Co} \{f^R_n\} \) (\(\text{Co} \{f^R_n\} \) stands for convex hull of \(\{f^R_n\} \))

then there exists a \(x \in K \) such that \(Tx = x \).

Proof. Let \(\varepsilon > 0 \) be arbitrary and let \(x_0 \) be a fixed element of \(M \). Define \(f_\alpha : M \rightarrow M \) as follows.

\[f_\alpha(x) = (1-\alpha)x_0 + \alpha fx, \quad 0 < \alpha < 1. \]
This definition makes the sense due to convexity of M.

Now

$$|| f_{a}x - f_{a}y || = || afx - afy ||$$

$$= |a| ||fx - fy||$$

$$\leq \alpha \max(||x-y||, \frac{1}{2}[||x-fx|| + ||y-fy||]).$$

$$\frac{1}{2}([||x-fy|| + ||y-fx||]).$$

Hence by Theorem 1, there is an element x_{a} such that $f_{a}x_{a} = x_{a}$.

Also

$$||x_{a} - fx_{a}|| = ||f_{a}x_{a} - fx_{a}||$$

$$= ||(1-a)x_{0} + afx_{a} - fx_{a}||$$

$$= ||(1-a)x_{0} - (1-a)fx_{a}||$$

$$= (1-a) ||x_{0} - fx_{a}|| .$$

Since M is bounded, we can choose a so close to 1 such that $||x_{a} - fx_{a}|| < \epsilon/6$. By condition (4.3.5) there is an element $y \in Co \{f^{n}x_{a}\}$ such that $||y-z|| < \epsilon/8$ for some $z \in K$. Now
\[||z-fz|| = ||z-y + y - fy + fy - fz|| \]
\[\leq ||z-y|| + ||y-fy|| + ||fy-fz|| \]
\[\leq ||z-y|| + ||y-fy|| + \max\{ ||z-y||, \frac{1}{2}[||y-fy|| + ||z-fz||], \frac{1}{2}[||y-fz|| + ||z-fy||]\} \]
\[\leq ||z-y|| + ||y-fy|| + ||z-y|| + ||y-fy|| / 2 + \]
\[||z-fz|| / 2 \]

implying

\[||z-fz|| \leq 4||z-y|| + 3||y-fy|| \]
\[\leq 4 \frac{\varepsilon}{6} + 3 \frac{\varepsilon}{6} \]
\[= \varepsilon. \]

Hence \(\inf_{z \in K} ||z-fz|| \) = 0. Since \(K \) is compact and \(\varphi \) is continuous, this infimum is attained at some point \(x \in K \), which is the fixedpoint of \(f \).

THEOREM 5. Let \(X \) be a Banach space. Let \(M \) be a bounded closed starshaped subset of \(X \). Let \(f : M \to M \) be a continuous mapping of \(M \) into itself satisfying (4.1.2). Suppose there exists a compact set \(K \) in \(X \) such that for
every \(x \in X \), the closure of the sequence of iterates \(\{f^n x\} \) contains a point of \(K \). Then \(f \) has a fixed point.

Proof. Without loss of generality, we assume that the origin \(0 \) is in \(X \) and \(M \) is starshaped about \(0 \). We define the mapping \(f_\alpha \) as follows

\[
f_\alpha x = \alpha f x, \quad 0 < \alpha < 1 \text{ and } x \in M.
\]

Now,

\[
||f_\alpha x - f_\alpha y|| = ||\alpha f x - \alpha f y||
\]

\[
= \alpha ||f x - f y||
\]

\[
\leq \alpha \max(||x - y||, \tfrac{1}{2}[||x - f x|| + ||y - f y||])
\]

\[
\leq \tfrac{1}{2}[||x - f y|| + ||y - f x||].
\]

(since \(f \) satisfies (4.1.2))

Therefore \(f_\alpha \) has a unique fixed point \(x_\alpha \in M \) i.e. \(f_\alpha x_\alpha = x_\alpha \).

Also

\[
||x_\alpha - f x_\alpha|| = ||f_\alpha x_\alpha - f x_\alpha||
\]

\[
= ||\alpha f x_\alpha - f x_\alpha||
\]

\[
\leq (1 - \alpha) ||f x_\alpha||
\]

\[
< \delta (1 - \alpha)
\]

(4.3.6)

where \(\delta \) is the diameter of \(M \).
On the other hand by assumption, there exists an integer \(n(a) \) and a point \(y_\alpha \in K \) such that

\[
||y_\alpha - x_n(a)x_\alpha|| < (1 - \alpha) \tag{4.3.7}
\]

Then

\[
||y_\alpha - fy_\alpha|| = ||y_\alpha - x_n(a)x_\alpha + x_n(a)x_\alpha - x_n(a)x_\alpha + x_n(a)x_\alpha - fy_\alpha||
\]

\[
\leq ||y_\alpha - x_n(a)x_\alpha|| + ||x_n(a)x_\alpha - x_n(a)x_\alpha|| + ||x_n(a)x_\alpha - fy_\alpha|| \tag{4.3.8}
\]

Now

\[
||x_n(a)x_\alpha - x_n(a)x_\alpha|| \leq \max\{||x_n(a)x_\alpha - x_n(a)x_\alpha||,
\]

\[
\frac{1}{2}||x_n(a)x_\alpha - x_n(a)x_\alpha|| + \frac{1}{2}||x_n(a)x_\alpha - x_n(a)x_\alpha||
\]

\[
||x_n(a)x_\alpha - x_n(a)x_\alpha|| \leq \left\{ \frac{1}{2}||x_n(a)x_\alpha - x_n(a)x_\alpha|| + \frac{1}{2}||x_n(a)x_\alpha - x_n(a)x_\alpha|| \right\}.
\]
If we take the maximum as $||f^{n(a)} - 1_x - f^{n(a)} x_u||$, then we have

$$||f^{n(a)} x_u - f^{n(a)} x_u|| \leq ||f^{n(a)} - 1_x - f^{n(a)} x_u||.$$ \hspace{1cm} (4.3.9)

If we take \(\frac{1}{2}[||f^{n(a)} - 1_x - f^{n(a)} x_u|| + ||f^{n(a)} x_u - f^{n(a)} + 1_x||] \) as maximum, then

$$||f^{n(a)} x_u - f^{n(a)} x_u|| \leq \frac{1}{2}[||f^{n(a)} - 1_x - f^{n(a)} x_u|| + ||f^{n(a)} x_u - f^{n(a)} + 1_x||].$$

implying

$$||f^{n(a)} x_u - f^{n(a)} + 1_x|| \leq ||f^{n(a)} - 1_x - f^{n(a)} x_u||.$$ \hspace{1cm} (4.3.10)

Finally if \(\frac{1}{2}||f^{n(a)} - 1_x - f^{n(a)} x_u|| \) is maximum then

$$||f^{n(a)} x_u - f^{n(a)} + 1_x|| \leq \frac{1}{2}||f^{n(a)} - 1_x - f^{n(a)} x_u||$$
\[\leq \frac{1}{2} \| f(n(a)-1)^{\frac{1}{2}} x_a - f(n(a) x_a + f(n(a)^{\frac{1}{2}} x_a \| + f(n(a)^{\frac{1}{2}} x_a \|) \]

\[\leq \frac{1}{2} \| f(n(a)-1)^{\frac{1}{2}} x_a - f(n(a) x_a \| + \frac{1}{2} \| f(n(a) x_a - f(n(a)^{\frac{1}{2}} x_a \| \]

implying

\[\| f(n(a) x_a - f(n(a)^{\frac{1}{2}} x_a \| \leq \| f(n(a)-1)^{\frac{1}{2}} x_a - f(n(a) x_a \| \].

(4.3.11)

From inequalities (4.3.9), (4.3.10) and (4.3.11), it follows that

\[\| f(n(a) x_a - f(n(a)^{\frac{1}{2}} x_a \| \leq \| f(n(a)-1)^{\frac{1}{2}} x_a - f(n(a) x_a \| .

Continuing this process, we get

\[\| f(n(a) x_a - f(n(a)^{\frac{1}{2}} x_a \| \leq \| x_a - f x_a \|. \quad (4.3.12)

Also

\[\| f(n(a)^{\frac{1}{2}} x_a - f y_a \| \leq \max \{ \| f(n(a) x_a - y_a \| ,

\[\frac{1}{2} \| f(n(a) x_a - f(n(a)^{\frac{1}{2}} x_a \| + \| y_a - f y_a \| ,

\[\frac{1}{2} \| f(n(a) x_a - f y_a \| + \| y_a - f(n(a)^{\frac{1}{2}} x_a \| \} \]
\[\begin{align*}
\| y_a - x_a \| & \leq \| y_a - x^{(a)}_a \| + \frac{1}{2} \| x_a - f x_a \| + \frac{1}{2} \| y_a - f y_a \| \\
& \quad + \frac{1}{2} \| x_a - x^{(a)}_a \| \\
& \quad + \frac{1}{2} \| x_a - x^{(a)}_a \| \\
& \quad + \frac{1}{2} \| x_a - x^{(a)}_a \| \\
& \quad + \frac{1}{2} \| y_a - f y_a \| \\
& \leq 2 \| y_a - x^{(a)}_a \| + \| x_a - f x_a \| + \frac{1}{2} \| x_a - f x_a \| + \frac{1}{2} \| y_a - f y_a \| \\
& \quad + \frac{1}{2} \| y_a - f y_a \| \\
& \leq 2 \| y_a - x^{(a)}_a \| + \frac{3}{2} \| x_a - f x_a \| + \frac{1}{2} \| y_a - f y_a \| \\
\end{align*} \]

i.e.

\[\| y_a - f y_a \| \leq 4 \| y_a - x^{(a)}_a \| + 3 \| x_a - f x_a \| . \]

(4.3.14)

Substituting (4.3.6) and (4.3.7) in (4.3.14), we get

\[\| y_a - f y_a \| \leq 4(1-a) + 3 \delta (1-a) \]

\[\leq (1-a) (4 + 3 \delta) . \]

(4.3.15)
Now let \(\{a\} \) be a sequence converging to 1, using compactness of \(K \) it follows that there exists a subsequence of \(y_a \) which we denote by \(y_a \) that converges to \(y \in K \). From (4.3.15) we immediately conclude that \(y \) is a fixed point of \(f \).

THEOREM 6. Let \(H \) be a Hilbert space. Let \(M \) be a closed convex bounded subset of \(H \). Let \(f : M \rightarrow M \) be a continuous mapping satisfying (4.1.2). Then \(f \) has a fixed point in \(M \).

PROOF. Let \(u_0 \) be a fixed element of \(M \). For each \(a \) with \(0 < a < 1 \) we define \(f_a : M \rightarrow M \) by

\[
f_a(x) = (1 - a)u_0 + af(x).
\]

Now \(f_a \) satisfies the condition

\[
||f_a(x) - f_a(y)|| = ||af_x - af_y||
\]

\[
\leq a \max\{|||x-y|||, \frac{1}{2}[||x-fx|| + ||y-fy||] \}.
\]

Therefore, by Theorem 1 there exists a unique fixed point \(x_a \) in \(M \) such that \(f_a(x_a) = x_a \). Since \(M \) is closed bounded and convex in the Hilbert space \(H \), it is weakly compact. Hence we confind a sequence \(a_i \rightarrow 1 \) as \(i \rightarrow \infty \) such that \(x_i = x_{a_i} \) converges weakly to an element \(x_0 \) of \(H \). Since
M is weakly closed x_0 lies in M. We shall prove that x_0 is a fixed point of f. If x is any point in M, we note that

$$
||x_1 - x||^2 = ||x_1 - x_0 + x_0 - x||^2

= ||x_1 - x_0||^2 + ||x_0 - x||^2 + 2(x_1 - x_0, x_0 - x)
$$

where $2(x_1 - x_0, x_0 - x) \to 0$ as $i \to \infty$ because $x_1 - x_0$ converges weakly to zero in M. However since $a_i \to 1$, we have

$$
f_{x_1 - x_1} = (a_i f(x_1) + (1-a_i)u_0) - x_1 + (1-a_i)(f(x_1) - u_0)

= (a_i f(x_1) = (x_1) + (1-a_i)(f(x_1) - u_0)

= (1-a_i)(f(x_1) - u_0)

\to 0 \text{ as } i \to \infty.
$$

Setting $x = f_{x_0}$, we have

$$
\lim_{i \to \infty} \{||x_1 - f_{x_0}||^2 - ||x_1 - x_0||^2\} = ||x_0 - f_{x_0}||^2.
$$

On the other hand, since f satisfies (4.1.2), we get

$$
||fx_1 - fx_0|| \leq \max(||x_1 - x_0||, \frac{1}{2}[||x_1 - fx_1|| + ||x_0 - fx_0||]),
$$

$$
\frac{1}{2}[||x_1 - fx_0|| + ||x_0 - fx_1||]. \quad (4.3.16)
$$
If the maximum is $||x_1 - x_0||$, then

$$||x_1 - x_0|| \leq ||x_1 - x_0||.$$ \hfill (4.3.17)

If the maximum is $\frac{1}{2}(||x_1 - x_1|| + ||x_0 - x_0||)$, then

$$||x_1 - x_0|| \leq \frac{1}{2}||x_1 - x_1|| + \frac{1}{2}||x_0 - x_0||$$

$$\leq \frac{1}{2}||x_1 - x_1|| + \frac{1}{2}||x_0 - x_1|| +$$

$$\frac{1}{2}||x_1 - x_1|| + \frac{1}{2}||x_1 - x_0||$$

i.e.

$$||x_1 - x_0|| \leq ||x_0 - x_1|| + 2||x_1 - x_1||.$$ \hfill (4.3.18)

If the maximum is $\frac{1}{2}(||x_0 - x_1|| + ||x_1 - x_0||)$, then

$$||x_1 - x_0|| \leq \frac{1}{2}||x_0 - x_1|| + \frac{1}{2}||x_1 - x_0||$$

$$\leq \frac{1}{2}||x_0 - x_1|| + \frac{1}{2}||x_1 - x_1|| +$$

$$\frac{1}{2}||x_1 - x_1|| + \frac{1}{2}||x_0 - x_1||$$

i.e.

$$||x_1 - x_0|| \leq ||x_0 - x_1|| + 2||x_1 - x_1||.$$ \hfill (4.3.19)
Also we have

\[||x_1 - f x_0|| = ||x_1 - f x_1 + f x_1 - f x_0|| \]

\[\leq ||x_1 - f x_1|| + ||f x_1 - f x_0|| \quad (4.3.20) \]

substituting the value of \(||f x_1 - f x_0|| \) from (4.3.17), (4.3.18), (4.3.19) in (4.3.20) we get

\[||x_1 - f x_0|| \leq ||x_1 - f x_1|| + ||x_1 - x_0|| \quad (4.3.21) \]

and

\[||x_1 - f x_0|| \leq ||f x_1 - x_1|| + ||x_1 - x_0|| + 2 ||x_1 - f x_1|| \]

\[(4.3.22) \]

respectively.

But from (4.3.21) and (4.3.22) it is clear that

\[\text{Im} (||x_1 - f x_0|| - ||x_1 - x_0||) \leq 0 \]

and hence

\[\text{Im} (||x_1 - f x_0||^2 - ||x_1 - x_0||^2) \leq 0 \]

Finally, we have \(||x_0 - f x_0||^2 = 0 \) and hence \(x_0 \) is a fixed point of \(f \). This completes the proof.