Table of Contents

|
List of Content	i
List of Figure	vii
List of Table	xiv
List of Scheme	xvi
Abbreviations	xvii

1. INTRODUCTION AND LITERATURE SURVEY
 1.1. GENERAL BACKGROUND AND INTRODUCTION
 1.2. NOMENCLATURE
 1.3. CLASSIFICATION
 1.3.1. Nature of Secondary Building Units
 1.3.2. Chemical Composition
 1.3.3. Pore Opening Size
 1.4. ZEOLITE SYNTHESIS
 1.4.1. Factors Affecting Zeolite Synthesis
 1.4.1.1. Historical Parameters
 1.4.1.1.1. Aging
 1.4.1.1.2. Seeding
 1.4.1.2. Physical Parameters
 1.4.1.2.1. Temperature
 1.4.1.2.2. Time
 1.4.1.3. Chemical Parameters
 1.4.1.3.1. Silica/Alumina ratio
 1.4.1.3.2. Hydroxide concentration
 1.4.1.3.3. pH of synthesis gel
 1.4.1.3.4. Role of inorganic cation
 1.4.1.3.5. Structure directing agent or template
 1.4.1.3.6. Water content
1.5. USE OF FLUORIDE AS MINERALIZER 18
1.6. USE OF OXYANIONS AS PROMOTER 19
1.7. FAULTING IN ZEOLITIC STRUCTURE 20
1.8. PHYSICO-CHEMICAL CHARACTERIZATION 27
1.8.1. Powder X-Ray Diffraction 27
1.8.2. Diffuse Reflectance UV-Vis Spectroscopy 28
1.8.3. Fourier Transform Infrared (FTIR) Spectroscopy 29
1.8.4. Nuclear Magnetic Resonance (NMR) Spectroscopy 29
1.8.5. Atomic Absorption Spectroscopy (AAS) 30
1.8.6. Scanning Electron Microscopy (SEM) 30
1.8.7. Adsorption Measurements 31
1.9. HOST-GUEST INTERACTION IN THE ZEOLITE 31
1.10. CATALYTIC APPLICATIONS AND PROSPECT 35
1.10.1. Acid Catalyzed Reactions 37
1.10.2. Redox Reactions 39
1.11. SCOPE AND OBJECTIVE OF THE THESIS 41
1.12. OUTLINE OF THE THESIS 42
1.13. REFERENCES 45

2. SYNTHESIS
2.1. INTRODUCTION 54
2.2. MATERIALS 55
2.3. SYNTHESIS OF POLYMORPH B ENRICHED INTERGROWTH OF ZEOLITE BETA (NCL-5, NCL-6, NCL-7) and *BEA
2.3.1. Experimental 56
2.3.1.1. Synthesis of NCL-5, NCL-6, NCL-7 and *BEA 56
2.3.2. Results and Discussion 58
2.3.2.1. Effect of Synthesis Parameters on NCL-7 58
 (Polymorph B : Polymorph A = 65 : 35)
 2.3.2.1.1. Effect of temperature 58
 2.3.2.1.2. Effect of seeding 60
2.3.2.1.3. Effect of TEAOH concentration 61
2.3.2.1.4. Effect of promoter concentration 63
 (HClO₄/ SiO₂ molar ratio)
2.3.2.1.5. Effect of H₂O/ SiO₂ molar ratio 66
2.3.2.2. Effect of Different Synthesis Parameters on NCL-7 (Polymorph B : Polymorph A = 90 : 10) 70

2.4. SYNTHESIS OF Al-NCL-7 74
2.4.1. Experimental 74
 2.4.1.1. Synthesis of Al-NCL-7 74
 2.4.1.2. Synthesis of Al-impregnated NCL-7 74
2.4.2. Results and Discussion 75
 2.4.2.1. Effect of Al-Content 75
 2.4.2.2. Effect of pH 76

2.5. SYNTHESIS OF Ti-NCL-7 78
2.5.1. Experimental 78
 2.5.1.1. Synthesis of Ti-NCL-7 78
 2.5.1.2. Synthesis of Ti-impregnated NCL-7 78
2.5.2. Results and Discussion 78

2.6. SYNTHESIS OF REFERENCE SAMPLES 80
2.6.1. Synthesis of Al-Beta 80
2.6.2. Synthesis of Ti-Beta 80
2.6.3. Synthesis of Silicalite-1 81
2.6.4. Synthesis of Al-ZSM-5 81
2.6.5. Synthesis of Si-MCM-41 82
2.6.6. Synthesis of Al-MCM-41 83

2.7. CONCLUSIONS 84
2.8. REFERENCES 85
3. CHARACTERIZATION TECHNIQUES

3.1. INTRODUCTION 87

3.2. EXPERIMENTAL 87

3.2.1. X-Ray Diffraction 87

3.2.2. Adsorption Measurements 88

3.2.3. Diffuse Reflectance UV-Vis Spectroscopy 89

3.2.4. Fourier Transform Infrared (FTIR) Spectroscopy 89

3.2.5. Nuclear Magnetic Resonance (NMR) Spectroscopy 89

3.2.6. Scanning Electron Microscopy (SEM) 89

3.3. RESULTS AND DISCUSSION 90

3.3.1. Polymorph B Enriched Structures: NCL-5, NCL-6 and NCL-7 90

3.3.1.1. X-Ray Diffraction 90

3.3.1.1.1. Rietveld refinement 90

3.3.1.1.2. DIFFaX 95

3.3.1.2. N\textsubscript{2} Adsorption 100

3.3.1.3. Framework FTIR Spectroscopy 103

3.3.1.4. $^{29}\text{Si} \text{MAS NMR Spectroscopy}$ 105

3.3.1.5. Scanning Electron Microscopy (SEM) 108

3.3.2. Al-NCL-7 and Ti-NCL-7 109

3.3.2.1. X-Ray Diffraction 109

3.3.2.2. N\textsubscript{2} Adsorption 112

3.3.2.3. Diffuse Reflectance UV-Vis Spectroscopy 113

3.3.2.4. $^{27}\text{Al} \text{MAS NMR Spectroscopy}$ 115

3.3.2.5. Scanning Electron Microscopy 116

3.3.3. Reference Materials 117

3.4. CONCLUSIONS 120

3.5. REFERENCES 122
4. MOLECULAR MOTIONS OF BENZENE AND HEXADEUTERATED BENZENE IN BETA, ZSM-5 AND MCM-41 MATERIALS: ROLE OF PORE CHARACTERISTICS AND FRAMEWORK Al³⁺ SITES

4.1. INTRODUCTION 124
4.2. MATERIALS AND CHARACTERIZATION 126
4.3. INSTRUMENTATION AND METHODOLOGY 126
4.4. ADSORPTION AND BINDING STATE OF BENZENE AND DEUTERATED BENZENE IN BEA TYPE TOPOLOGY

4.4.1. Results 129
4.4.1.1. Adsorption of Benzene (C₆H₆) in Al-Beta 129
4.4.1.1.1. Out-of-plane combination (C-H) bending vibrations (2050 -1750 cm⁻¹) 129
4.4.1.1.2. In-plane C-H/C-C stretch combination bands (3150-2950 cm⁻¹) 131
4.4.1.1.3. Fundamental ν₁₉ C-C stretching vibration (1479 cm⁻¹) 133
4.4.1.2. Adsorption of C₆D₆ in Si-Beta and Polymorph B Enriched Structures (NCL-7, NCL-6 and NCL-5): A Comparison 135
4.4.1.3. Adsorption of Hexadeuterobenzene (C₆D₆) 141
4.4.1.4. OH/OD Stretching Bands 143
4.4.2. Discussion 147
4.4.3. Conclusions 154

4.5. ADSORPTION AND BINDING STATES OF BENZENE AND DEUTERATED BENZENE IN MFI AND M41S TYPE MATERIALS: A COMPARATIVE STUDY

4.5.1. Results 157
4.5.1.1. Adsorption of Benzene (C₆H₆) in Al-ZSM-5 and Al-MCM-41 157