1. Figure 1.1: An artery with cholesterol builds up.

2. Figure 1.2: Normal and diseased artery

3. Figure 1.3: Reduced blood flow due to plaque in an artery

4. Figure 1.4: Renal arterial duplex ultrasonography of bilateral renal artery stenosis, demonstrates a Doppler spectral waveform of the left mid-renal artery, showing elevated peak systolic velocities, consistent with severe stenosis.

5. Figure 1.5: Accumulation of red blood cells due to stenosis.

6. Figure 1.6: Structure of the heart

7. Figure 1.7: The relation between Hematocrit and viscosity.

8. Figure 1.8: Double coronary artery bypass surgery, showing the grafting of a section of saphenous vein from the leg to bypass a blockage on the right side of the heart and the diversion of an internal mammary artery to bypass a blockage on the left side of the heart.

9. Figure 1.9: Femoral Popliteal Bypass

10. Figure 1.10: Bypass surgery: before and after

11. Figure 1.11: bypass surgery in right coronary artery

12. Figure 2.1 The physical configuration of the stenosis in an artery

13. Figure 2.2 Variation of resistance to flow with height of stenosis for different values of k

14. Figure 2.2 Variation of resistance to flow with height of stenosis for different values of k in quadratic variation of viscosity

15. Figure 2.3 Variation of resistance to flow with height of stenosis for different values of k

16. Figure 2.4 Variation of resistance to flow with height of stenosis for different values of length of stenosis

17. Figure 2.5 Variation of resistance to flow with height of stenosis for different values of length of stenosis in quadratic variation of viscosity

18. Figure 2.6 Variation of resistance to flow with height of stenosis in linear and quadratic variation of viscosity

19. Figure 2.7 Variation of resistance to flow with index of viscosity variation in linear and quadratic variation of viscosity

20. Figure 2.8 Variation of wall shear stress with height of stenosis for different values of k

21. Figure 2.9 Variation of wall shear stress with height of stenosis for different values of k in quadratic variation of viscosity
22. Figure 2.10 Variation of wall shear stress with height of stenosis in linear and quadratic variation of viscosity
23. Figure 2.11 Variation of wall shear stress with index of viscosity variation in linear and quadratic variation of viscosity

24. Figure 3.1 The physical configuration of the stenosis in an artery.

25. Figure 3.2 Variation of resistance to flow with height of stenosis for different values of length of stenosis when alpha=0
26. Figure 3.3 Variation of resistance to flow with height of stenosis for different values of length of stenosis when alpha=1
27. Figure 3.4 Variation of resistance to flow with height of stenosis for different values of length of stenosis when alpha=2
28. Figure 3.5 Variation of resistance to flow with height of stenosis for different values of alpha.
29. Figure 3.6 Variation of wall shear stress with height of stenosis for different values of alpha.
30. Figure 3.7 Variation of resistance to flow with height of stenosis for different values of index of viscosity variation in the inlet region when alpha =1
31. Figure 3.8 Variation of resistance to flow with height of stenosis for different values of index of viscosity variation in the inlet region when alpha =2
32. Figure 3.9 Variation of resistance to flow with height of stenosis for different values of index of viscosity variation in the stenotic region when beta =0.1
33. Figure 3.10 Variation of resistance to flow with height of stenosis for different values of length of stenosis when alpha =1 and beta=0.1
34. Figure 3.11 Variation of resistance to flow with height of stenosis for different values of length of stenosis when alpha =2 and beta=0.1
35. Figure 3.12 Variation of wall shear stress with height of stenosis for different values of index of viscosity variation in the inlet region when alpha =1
36. Figure 3.13 Variation of wall shear stress with height of stenosis for different values of index of viscosity variation in the inlet region when alpha =2
37. Figure 3.14 Variation of wall shear stress with height of stenosis for different values of alpha when beta=0.1.
38. Figure 4.1 Physical configuration of the stenosis in an artery
39. Figure 4.2 Variation of resistance to flow with height of stenosis for different values of index of viscosity variation in the inlet zone when alpha=0.
40. Figure 4.3 Variation of resistance to flow with height of stenosis for different values of index of viscosity variation in the inlet zone when alpha=1.
41. Figure 4.4 Variation of resistance to flow with height of stenosis for different values of index of viscosity variation in the inlet zone when alpha=2.
42. Figure 4.2 Variation of resistance to flow with height of stenosis for different values of index of viscosity variation in the inlet zone when alpha=0.
43. Figure 4.5 Variation of resistance to flow with height of stenosis for different values of index of viscosity variation in the outlet zone when alpha=0.
44. Figure 4.6 Variation of resistance to flow with height of stenosis for different values of index of viscosity variation in the outlet zone when alpha=1.
45. Figure 4.7 Variation of resistance to flow with height of stenosis for different values of index of viscosity variation in the outlet zone when alpha=2.
46. Figure 4.8 Variation of resistance to flow with height of stenosis for different values of index of viscosity variation in the stenotic zone when beta=0.1.
47. Figure 4.9 Variation of resistance to flow with height of stenosis for different values of length of stenosis when alpha=0.
48. Figure 4.10 Variation of resistance to flow with height of stenosis for different values of length of stenosis when alpha=1.
49. Figure 4.11 Variation of resistance to flow with height of stenosis for different values of length of stenosis when alpha=2.
50. Figure 4.12 Variation of wall shear stress with height of stenosis for different values of index of viscosity variation in the inlet zone when alpha=0.
51. Figure 4.13 Variation of wall shear stress with height of stenosis for different values of index of viscosity variation in the inlet zone when alpha=1.
52. Figure 4.14 Variation of wall shear stress with height of stenosis for different values of index of viscosity variation in the inlet zone when alpha=2.
53. Figure 4.15 Variation of wall shear stress with height of stenosis for different values of index of viscosity variation in the stenotic zone when gamma=0.1.
54. Figure 5.1 Physical configuration of the stenosis in an artery.
55. Figure 5.2 Variation of resistance to flow with height of stenosis for different values of k when alpha=0.
56. Figure 5.3 Variation of resistance to flow with height of stenosis for different values of k when alpha=1.
57. Figure 5.4 Variation of resistance to flow with height of stenosis for different values of k when alpha=2.
58. Figure 5.5 Variation of resistance to flow with height of stenosis for different combinations of index of radial and axial variation of viscosity.
59. Figure 5.6 Variation of resistance to flow with height of stenosis for different values of alpha.
60. Figure 5.7 Variation of resistance to flow with height of stenosis for different values of length of stenosis when alpha=1.
61. Figure 5.8 Variation of wall shear stress with height of stenosis for different values of k when alpha=0.
62. Figure 5.9 Variation of wall shear stress with height of stenosis for different values of k when alpha=1.
63. Figure 5.10 Variation of wall shear stress with height of stenosis for different values of k when alpha=2.
64. Figure 5.11 Variation of wall shear stress with height of stenosis for different values of alpha.
65. Figure 5.12 Variation of wall shear stress with height of stenosis for different combinations of index of radial and axial viscosity variation.
66. Figure 6.1 Physical configuration of the stenosis in an artery.
67. Figure 6.2 Variation of resistance to flow with height of stenosis for different values of k.
68. Figure 6.3 Variation of resistance to flow with height of stenosis for different values of length of stenosis.
69. Figure 6.4 Variation of resistance to flow with height of stenosis for different values of ratio of radius of peripheral region and core region.
70. Figure 6.5 Variation of wall shear stress with height of stenosis for different values of k.
71. Figure 6.6 Variation of wall shear stress with height of stenosis for different values of ratio of radius of peripheral region and core region.
72. Figure 7.1(a) Physical configuration of the bypass in a stenosed artery when geometry of stenosis is variable.
73. Figure 7.1(b) Physical configuration of the bypass in a stenosed artery when geometry of stenosis is constant.
74. Figure 7.2 Variation of resistance to flow with height of stenosis for different values of radius of bypass artery.
75. Figure 7.3 Variation of resistance to flow with length of stenosis for different values of radius of bypass artery.
76. Figure 7.4 Variation of resistance to flow with radius of bypass artery for different values of length of stenosis.
77. Figure 7.5 Variation of radius of bypass artery with stenosis height when resistance is similar as in the case without stenosis.
78. Figure 7.6 Variation of wall shear stress with height of stenosis for different values of volumetric flow rate.
79. Figure 7.7 Variation of resistance to flow with height of stenosis for different values of radius of bypass artery (Case II).
80. Figure 7.8 Variation of resistance to flow with length of stenosis for different values of radius of bypass artery (Case II).
81. Figure 7.9 Variation of resistance to flow with radius of bypass artery for different values of length of stenosis (Case II).
82. Figure 7.10 Variation of radius of bypass artery with stenosis height when resistance is similar as in the case without stenosis (Case II).
83. Figure 7.11 Variation of resistance to flow with height of stenosis in variable and constant values of geometry of stenosis.