<table>
<thead>
<tr>
<th>Figure #</th>
<th>Caption</th>
<th>Page #</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.1</td>
<td>Distribution equilibrium of the model ions: (a) Partial transfer of M from MX to MX' (b) Concentration profiles if the cation vacancies, V_n, and the interstitial cation, M_i, in Frenkel disordered materials</td>
<td>09</td>
</tr>
<tr>
<td>I.2</td>
<td>Phase diagram of Al_2O_3-Cr_2O_3</td>
<td>19</td>
</tr>
<tr>
<td>I.3</td>
<td>The only solid phases are the pure components</td>
<td>20</td>
</tr>
<tr>
<td>I.4</td>
<td>A compound, A_3B_2, with a congruent melting point, is formed</td>
<td>21</td>
</tr>
<tr>
<td>I.5</td>
<td>A compound, A_3B_2, with a incongruent melting point, is formed</td>
<td>22</td>
</tr>
<tr>
<td>I.6</td>
<td>The freezing-point curve exhibits a transition point</td>
<td>23</td>
</tr>
<tr>
<td>I.7</td>
<td>The freezing-point curve exhibits a eutectic point</td>
<td>24</td>
</tr>
<tr>
<td>II.1</td>
<td>The thenardite structure projected along 'b'. Black dots – s, open circles polyhedron are outlined. All oxygen atoms are equivalent different designations (I, II, III, a, b, c) are used only for description of polyhedra. Numbers are y-coordinate of the atoms</td>
<td>33</td>
</tr>
<tr>
<td>II.2</td>
<td>The thenardite structure projected along 'b'. The coordinations of a sodium and an oxygen atoms are outlined. Numbers are x-coordinates of the atoms</td>
<td>34</td>
</tr>
<tr>
<td>II.3</td>
<td>Phase diagram of Li$_2$SO$_4$-CaSO$_4$ diagram of system by A. Lunden & et al</td>
<td>44</td>
</tr>
<tr>
<td>II.4</td>
<td>a part of Phase system Li$_2$SO$_4$-SrSO$_4$ by A. Lunden & et al</td>
<td>44</td>
</tr>
<tr>
<td>II.5</td>
<td>Phase diagram of Li$_2$SO$_4$-MgSO$_4$ system by A. Lunden & et al</td>
<td>44</td>
</tr>
<tr>
<td>II.6</td>
<td>A part of Phase diagram of Li$_2$SO$_4$-BeSO$_4$ system by A. Lunden & et al</td>
<td>44</td>
</tr>
<tr>
<td>II.7</td>
<td>The phase diagram of the two-component system Li$_2$SO$_4$-Ag$_2$SO$_4$ according to γ-ye. Phase I is fcc, phase II is bcc, and phase III is hexagonal</td>
<td>46</td>
</tr>
<tr>
<td>II.8</td>
<td>Equilibrium diagram of the system Ag$_2$SO$_4$: Na$_2$SO$_4$ by N.P. Burnistrov et al</td>
<td>48</td>
</tr>
<tr>
<td>II.9</td>
<td>Solid-Solid phase diagram of the system Ag$_2$SO$_4$: NaSO$_4$ by Kumari and Secco</td>
<td>48</td>
</tr>
</tbody>
</table>
II.10 Solid-Solid Phase diagram of the system Ag₂SO₄ by Kumari and Secco

III.1 Arrangement of temperature sensor in differential scanning calorimetry (DSC)

III.2 Determination of transition temperature T₁, T₂ and T₃

III.3 Represent block diagram of the instrumental set-up

III.4 Calculated diffraction patterns for various cubic lattices

III.5 Schematic of electrochemical cell

III.6 Sensor probe assembly

III.7 A block diagram of the multi-sensor characterization workstation

IV.1 A simple linear RC circuit

IV.2 (a) An electrical equivalent and (b) Geometric response of circuit in complex impedance plane

IV.3 (a) Electrical equivalent for distributed circuit elements and (b) Geometric response in complex impedance plane

IV.4a (a) Series combination of resistor R₁ with capacitor C₁ and resistor R₂ with capacitor C₂ connected in parallel, (b) a series combination of resistor R₁ with capacitor C₁ connected in parallel with R₂ and whole circuit is connected in series with capacitor C₂, (c) a series combination of resistor R₁ with capacitor C₁ connected in parallel with C₂ and whole circuit is connected in series with capacitor R₂ along with corresponding complex impedance plots for different values of components

IV.4b (a) Parallel combination of resistor R₁ and capacitor C₁ in series with a parallel combination of resistor R₂ and capacitor C₂, (b), (c) and (d) complex impedance plots for different values of components

IV.5 Schematic presentation of sample holder for impedance measurement of six samples

IV.6 Temperature profile during the impedance measurement

IV.7 Schematic representation of experimental set-up for multi-channel complex impedance measurement

IV.8 Complex impedance plots for pure Ag₂SO₄ with silver electrodes

IV.9 Complex impedance plots for (100-x) Ag₂SO₄:(x)MSO₄ systems, at temperature 250°C (a) M = Ba and (b) M = Ca

IV.9b Complex impedance plot for (80) Ag₂SO₄:(20) CaSO₄ system at
temperature various temperatures

IV. 10a A Schematic Representation of (a) Polycrystalline Sample (b) discrete electrical elements and (c) lumped electrical equivalent circuit

IV. 11 (a) The interfacial Ag₂SO₄/ MSO₄ grain contact involving space charge layer (b) Equivalent circuit

IV. 12 Plot of $\log(\sigma T)$ against $10^3/T$ for Ag₂SO₄ prepared using (a) slow-cooling and (b) quenching technique

IV. 13 $\log(\sigma T)$ vs $10^3/T$ for Ag₂SO₄BaSO₄ system within solid solubility region

IV. 14 $\log(\sigma T)$ vs $10^3/T$ for (100-x)Ag₂SO₄-(x) BaSO₄ (x=10-90)

IV. 15 Conductivity isotherm at 250°C for (100-x)Ag₂SO₄-(x) BaSO₄ (x=10-90)

IV. 16 $\log[\sigma T]$ Vs $10^3/T$ for (1-x)Ag₂SO₄-(x)CaSO₄

IV. 17 $\log\sigma T$ Vs $10^3/T$ for (100-x)Ag₂SO₄-(x)CaSO₄ for (a) x = 10 to 60 and (b) x = 70 to 100

IV. 18 Conductivity isotherm (a) x = 0 to 10, for (b) x = 10 to 60 and (c) x = 70 to 100; in HTR and LTR Regions

IV. 19 The lattice when some of the Ag⁺ are partially replaced by $r_e < r_h$ along with there modified potential wells

IV. 20 Activation energy (E_a) Vs CaSO₄ concentration

IV. 21 Schematic representation of defects at Ag₂SO₄/CaSO₄ interface

IV. 22 Arrhenius plots for Ag₂SO₄ : MgSO₄ binary system

IV. 23 Equivalent circuit for a mixed conductor

IV. 24 A schematic representation of Tubandt’s method

IV. 26 Experimental arrangement for the determination of transport number of controlled gas with different partial pressure

IV. 27 Schematic Representation of experimental setup for transport number determination

IV. 28 The variation of dc conductivity with time for pure Ag₂SO₄ at 450°C under normal and SO₂ partial pressure

V. 1 DSC thermogram of pure Ag₂SO₄
V.2 Variations of (a) \(T_c \) and (b) \(\Delta H \) with concentrations of \(\text{BaSO}_4 \) in \(\text{Ag}_2\text{SO}_4 \)

V.3 Variation of \(T_c \) and \(\Delta H \) with concentration of \(\text{CaSO}_4 \) in \(\text{Ag}_2\text{SO}_4 \)

V.4 DTA thermogram of \(80\text{Ag}_2\text{SO}_4-20\text{CaSO}_4 \)

V.5 Variation of (a) \(T_c \) and (b) \(\Delta H \) with \(\text{BaSO}_4 \) concentration in \(\text{Ag}_2\text{SO}_4 \)

V.6 X-ray powder diffraction pattern of \(80\text{Ag}_2\text{SO}_4-20\text{CaSO}_4 \) at (a) RT (b) 440°C (c) 300°C (d) RT (room temperature) after cooling

V.7 IR Spectra of melt cooled Pure \(\text{Ag}_2\text{SO}_4 \)

V.8a FTIR stack-plots for 5.27 mole% \(M^{2+} \) doped \(\text{Ag}_2\text{SO}_4 \) Samples (for \(\nu_3 + \nu_1 \))

V.8b FTIR stack-plots for 5.27 mole% \(M^{2+} \) doped \(\text{Ag}_2\text{SO}_4 \) Samples (for \(\nu_4 \))

V.9 FTIR stackplots for 3 mole% \(M^{2+} \) doped \(\text{Ag}_2\text{SO}_4 \) samples along with \(\text{Ag}_2\text{SO}_4 \)

V.10 Microstructure of (100-x) \(\text{Ag}_2\text{SO}_4-(x) \) \(\text{BaSO}_4 \) for (a) = 20 (b) = 30 and (c) = 40

V.11 Microstructure of (100-x)\(\text{Ag}_2\text{SO}_4 : (x) \text{CaSO}_4 \) for (a) \(x = 0.00 \) (pure \(\text{Ag}_2\text{SO}_4 \)) (b) \(x = 5.27 \) (c) \(x = 10 \) mole % \(\text{CaSO}_4 \) (d) Exploded view of figure (c)

V.12 Microstructure of (100-x)\(\text{Ag}_2\text{SO}_4 : (x) \text{CaSO}_4 \) for (a) \(x = 0.10 \) (b) \(x = 20 \) (c) \(x = 30 \) mole% \(\text{CaSO}_4 \)

V.13 Microstructure of (100-x) \(\text{Ag}_2\text{SO}_4 : (x) \text{MgSO}_4 \) for (a) \(x = 10 \) (b) \(x = 30 \) (c) \(x = 50 \) mole % of \(\text{MgSO}_4 \)

V.14 (a) Microphotographs of the sample after indentation and (b) Magnified view of indented portion of sample

V.15 The variation of hardness for samples with change in (a) \(\text{CaSO}_4 \) and (b) \(\text{BaSO}_4 \) concentration in \(\text{Ag}_2\text{SO}_4 \)

V.16 Phase diagram for \(\text{Ag}_2\text{SO}_4-\text{BaSO}_4 \) system. The broken indicates uncertainty of solid solution

V.17 Phase diagram for \(\text{Ag}_2\text{SO}_4-\text{CaSO}_4 \) system. Broken indicates uncertainty of solid solution

V.18 Phase diagram for \(\text{Ag}_2\text{SO}_4-\text{MgSO}_4 \) system. The broken indicates uncertainty of solid solution range

V.19 Variation of sensor emf with time after toggling of \(\text{SO}_2 \) partial
pressure for 70Ag₂SO₄ – 30BaSO₄ based sensor

Variation of sensor emf with time after toggling of SO₂ partial

pressure for 80Ag₂SO₄ – 20CaSO₄ based sensor at 500°C