References

Bode, W., Gomis – Ruth, F.X. and Stocker, W. (1993). Astacins, Serralysins, snake venom and matrix metalloproteinases exhibit identical zinc-binding environments (HEXXHXXGXXH and Met-turn) and topologies and should be grouped into a common family, the metzincins. FEBS Lett. 331, 134 – 140.

Fisher, L.W., Termine, J.D. and Young, M.F. (1989). Deduced protein sequence of bone small proteoglycan I (biglycan) shows homology with proteoglycan II (decorin) and several non-connective tissue proteins in a variety of species. J. Biol. Chem. 264, 4571 – 4576.

Ha, H.Y., Moon, H.B., Nam, M.S., Lee, J.W., Ryoo, Z.Y., Lee, T.H., Lee, K.K.,
membrane type matrix metalloproteinase – 1 gene induces mammary gland
abnormalities and adenocarcinoma in transgenic mice. Cancer Res. 61,
984 - 990.

classification. Methods Enzymol. 82, 769 – 800.

and their role on leukocytes. Annu. Rev. immunol. 8, 365 – 400.

signaling in mammary gland development. J. Biol. Chem. 272, 7567 –
7569.

mammary gland – Histological and ultrastructural changes. J. Dairy Sci.
70, 935 – 944.

(stroma and extracellular matrix) on the development and function of
mammary epithelium. Epithelial Cell Biol. 2, 79 – 89.

Cellular growth and survival are mediated by β, integrins in normal human
1957.

72, 1637 – 1646.

549 – 554.

Kirchhofer, D., Languino, L.R., Ruoslahti, E. and Pierschbacher, M.D. (1990). \(\alpha_i\beta_j \) integrins from different cell types show different binding specificities. J. Biol. Chem. 265, 615 – 618.

Woodward, T.L., Mienaltowski, A.S., Modi, R.R., Bennett, J.M. and Haslam, S.Z. (2001). Fibronectin and \(\alpha_5\beta_1 \) the integrin are under developmental and ovarian steroid regulation in the normal mouse mammary gland. Endocrinology 142, 3214-3222.

