Chapter 4

Fuzzy \(\ell\)-ideal in \(\ell\)-near ring

In this chapter, we study about the fuzzy \(\ell\)-ideal of the \(\ell\)-near ring. The concept of fuzzy \(\ell\)-ideal and level \(\ell\)-ideal of a \(\ell\)-near ring were introduced and their properties are studied. Further, the characterization theorem of fuzzy \(\ell\)-ideal, a procedure to construct a fuzzy \(\ell\)-ideal from any given ascending chain of \(\ell\)-ideals of a \(\ell\)-near ring, the necessary and sufficient condition for equality of two level \(\ell\)-ideals. Also established the image of a fuzzy \(\ell\)-ideal and the pre-image of a fuzzy \(\ell\)-ideal under the \(\ell\)-homomorphism are also fuzzy \(\ell\)-ideals.

Definition 4.1. Let \((L_N, +, \cdot, \vee, \wedge)\) be a \(\ell\)-near ring and \(\mu\) be a fuzzy subset of \(L_N\). Then \(\mu\) is called a fuzzy \(\ell\)-ideal of \(L_N\) or fuzzy sub \(\ell\)-near ring ideal, if it satisfies the following:

(i) \(\mu(x - y) \geq \min\{\mu(x), \mu(y)\}\);

(ii) \(\mu(xy) \geq \min\{\mu(x), \mu(y)\}\);

(iii) \(\mu(x \vee y) \geq \min\{\mu(x), \mu(y)\}\);

(iv) \(\mu(x \wedge y) \geq \max\{\mu(x), \mu(y)\}\);

(v) \(\mu(x) = \mu(y + x - y)\);
(vi) $\mu(xy) \geq \mu(y)$;

(vii) $\mu((x + i)y - xy) \geq \mu(i)$, for all $x, y, i \in \mathcal{L}_N$.

Example 4.1. Let $\mathcal{L}_N = \{m, n\}$ be a set of two different symbols with four binary operations are defined as follows:

<table>
<thead>
<tr>
<th></th>
<th>m</th>
<th>n</th>
<th>\vee</th>
<th>m</th>
<th>n</th>
<th>\wedge</th>
<th>m</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>m</td>
<td>n</td>
<td>m</td>
<td>m</td>
<td>n</td>
<td>m</td>
<td>m</td>
<td>n</td>
</tr>
<tr>
<td>n</td>
<td>n</td>
<td>m</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
<td>n</td>
</tr>
</tbody>
</table>

and $m \cdot n = n$.

Then $(\mathcal{L}_N, +, \cdot, \vee, \wedge)$ is a ℓ-near ring.

We define a fuzzy subset $\mu : \mathcal{L}_N \to [0, 1]$ by $\mu(n) \leq \mu(m)$. Then μ is a fuzzy ℓ-ideal of \mathcal{L}_N.

Proposition 4.1. If μ is a fuzzy ℓ-ideal of \mathcal{L}_N, then $\mu(x + y) = \mu(y + x)$, for all $x, y \in \mathcal{L}_N$.

Proof:

Assume that μ is a fuzzy ℓ-ideal of \mathcal{L}_N.

To prove that $\mu(x + y) = \mu(y + x)$.

Let $x, y \in \mathcal{L}_N$ be arbitrary and put $z = x + y$. Then, $\mu(x + y) = \mu(z) = \mu(-x + z + x) = \mu(-x + x + y + x) = \mu(y + x)$.

Proposition 4.2. If μ is a fuzzy ℓ-ideal of \mathcal{L}_N, then $\mu(1) \leq \mu(x) \leq \mu(0)$, for all $x \in \mathcal{L}_N$.

Proof:

Given that μ is a fuzzy ℓ-ideal of \mathcal{L}_N.

To prove that $\mu(1) \leq \mu(x) \leq \mu(0)$, for all $x \in \mathcal{L}_N$.

We take $x = x, y = 1$, then $\mu(x.1) \geq \mu(1)$.

$$\implies \mu(x) \geq \mu(1).$$

Also $\mu(0) = \mu(x - x) \geq \min\{\mu(x), \mu(x)\} \geq \mu(x)$.

$$\implies \mu(0) \geq \mu(x).$$

Hence $\mu(1) \leq \mu(x) \leq \mu(0)$.

43
Proposition 4.3. If \(\mu \) is a fuzzy \(\ell \)-ideal of \(\mathcal{L}_N \), then \(\mu(x) = \mu(-x) \), for all \(x \in \mathcal{L}_N \).

Proof:
Given that \(\mu \) is a fuzzy \(\ell \)-ideal of \(\mathcal{L}_N \).
To prove that \(\mu(x) = \mu(-x) \), for all \(x \in \mathcal{L}_N \).
Let \(x \in \mathcal{L}_N \) be arbitrary.
Then \(-x = 0 + (-x) = 0 - x \).
\[\implies \mu(-x) = \mu(0 - x) \geq \min\{\mu(0), \mu(x)\} = \mu(x), \text{ by proposition 4.2.} \]
\[\implies \mu(-x) \geq \mu(x). \quad (1) \]
Again \(\mu(x) = \mu(-(x)) \geq \mu(-x) \), by (1).
\[\implies \mu(x) \geq \mu(-x). \quad (2) \]
Hence \(\mu(x) = \mu(-x) \), by (1) and (2).

Proposition 4.4. If \(\mu \) is a fuzzy \(\ell \)-ideal of a \(\ell \)-near ring \(\mathcal{L}_N \), then \(\mu(x + y) \geq \min\{\mu(x), \mu(y)\} \), for all \(x, y \in \mathcal{L}_N \).

Proof:
Given that \(\mu \) is a fuzzy \(\ell \)-ideal of \(\mathcal{L}_N \).
To prove that \(\mu(x + y) \geq \min\{\mu(x), \mu(y)\} \), for all \(x, y \in \mathcal{L}_N \).
Let \(x, y \in \mathcal{L}_N \) be arbitrary. Then,
\[\mu(x + y) = \mu(x - (-y)) \]
\[\geq \min\{\mu(x), \mu(-y)\} \]
\[= \min\{\mu(x), \mu(y)\}, \text{ by proposition 4.3.} \]
Hence \(\mu(x + y) \geq \min\{\mu(x), \mu(y)\} \), for all \(x, y \in \mathcal{L}_N \).

Proposition 4.5. Let \(\mu \) be a fuzzy \(\ell \)-ideal of \(\mathcal{L}_N \). If \(\mu(x - y) = \mu(0) \), then \(\mu(x) = \mu(y) \), for all \(x, y \in \mathcal{L}_N \).
Proof:

Given that μ is a fuzzy ℓ-ideal of \mathcal{L}_N and assume that $\mu(x - y) = \mu(0)$.

To prove that $\mu(x) = \mu(y)$, for all $x, y \in \mathcal{L}_N$.

Since μ is a fuzzy ℓ-ideal of \mathcal{L}_N, then we have

\[
\mu(x) = \mu(y + x - y) \\
= \mu(y + (x - y)) \\
\geq \min\{\mu(y), \mu(x - y)\}, \text{ by proposition 4.4} \\
= \min\{\mu(y), \mu(0)\}, \text{ by assumption} \\
= \mu(y), \text{ by proposition 4.2}
\]

$\mu(x) \geq \mu(y)$.

Also, $\mu(y) = \mu(x - x + y) \\
= \mu(x - (x - y)) \\
\geq \min\{\mu(x), \mu(x - y)\} \\
= \min\{\mu(x), \mu(0)\}, \text{ by assumption} \\
= \mu(x), \text{ by proposition 4.2}

$\mu(y) \geq \mu(x)$.

Hence $\mu(x) = \mu(y)$.

Proposition 4.6. If μ is a fuzzy ℓ-ideal of \mathcal{L}_N, then $\mu(x) \geq \mu(y)$ whenever $x \leq y$, for all $x, y \in \mathcal{L}_N$.

Proof:

Given that μ is a fuzzy ℓ-ideal of \mathcal{L}_N and let $x \leq y$.

To prove that $\mu(x) \geq \mu(y)$, for all $x, y \in \mathcal{L}_N$.

Here $x \leq y$, then $x = x \land y$ and $y = x \lor y$.

$\implies \mu(x) = \mu(x \land y) \geq \max\{\mu(x), \mu(0)\} \geq \mu(y)$.

45
Proposition 4.7. Let μ be a fuzzy ℓ-ideal of \mathcal{L}_N. If $\mu(x - y) = 1$, then $\mu(x) = \mu(y)$, for all $x, y \in \mathcal{L}_N$.

Proof:
Given that μ is a fuzzy ℓ-ideal of \mathcal{L}_N and assume that $\mu(x - y) = 1$.
To prove that $\mu(x) = \mu(y)$, for all $x, y \in \mathcal{L}_N$.
Let $x, y \in \mathcal{L}_N$ be arbitrary.
Since \mathcal{L}_N is a ℓ-near ring and $x - y \in \mathcal{L}_N$, then by proposition 4.2, we have $\mu(x - y) \leq \mu(0)$ and thus $1 \leq \mu(0)$, by assumption.
But $\mu(0) \leq 1$, since $\operatorname{Im}(\mu) \in [0, 1]$ and so $\mu(0) = 1$.
Hence $\mu(x - y) = \mu(0)$, by assumption.
Therefore $\mu(x) = \mu(y)$, by proposition 4.5.

Proposition 4.8. Let μ be a fuzzy ℓ-ideal of \mathcal{L}_N. If $\mu(x) < \mu(y)$, then $\mu(x + y) = \mu(x)$, for all $x, y \in \mathcal{L}_N$.

Proof:
Given that μ is a fuzzy ℓ-ideal of \mathcal{L}_N.
Assume that $\mu(x) < \mu(y)$. \hfill (1)
To prove that $\mu(x + y) = \mu(x)$, for all $x, y \in \mathcal{L}_N$.
Let $x, y \in \mathcal{L}_N$ be arbitrary.
$\implies \mu(x + y) \geq \min\{\mu(x), \mu(y)\}$, by proposition 4.4.
$\implies \mu(x + y) \geq \mu(x)$, by (1). \hfill (2)
Since μ is a fuzzy ℓ-ideal of \mathcal{L}_N, then
\[
\mu(x) = \mu(y + x - y) \\
= \mu((y + x) - y) \\
\geq \min\{\mu(y + x), \mu(y)\} \\
= \mu(y + x) \\
= \mu(x + y), \text{by proposition } 4.1
\]
\[\mu(x) \geq \mu(x + y). \]
(3)

Hence \(\mu(x) = \mu(x + y) \), by (2) and (3).

Proposition 4.9. Let \(\mu \) and \(\sigma \) be any two fuzzy \(\ell \)-ideals of \(\mathcal{L}_N \). If \(\mu(x) < \sigma(x) \) and \(\mu(y) < \sigma(y) \), then \(\mu(x + y) < \sigma(x + y) \), for some \(x, y \in \mathcal{L}_N \).

Proof:

Given that \(\mu \) and \(\sigma \) are two fuzzy \(\ell \)-ideals of \(\mathcal{L}_N \).

Assume that \(\mu(x) < \sigma(x) \) and \(\mu(y) < \sigma(y) \).
(1)

To prove that \(\mu(x + y) < \sigma(x + y) \), for some \(x, y \in \mathcal{L}_N \).

By proposition 4.4, we have \(\mu(x + y) \geq \min\{\mu(x), \mu(y)\} \) and \(\sigma(x + y) \geq \min\{\sigma(x), \sigma(y)\} \), for all \(x, y \in \mathcal{L}_N \).
(2)

To prove that \(\mu(x + y) < \sigma(x + y) \).

Case (i)

Let \(\min\{\mu(x), \mu(y)\} = \mu(x) \) and \(\min\{\sigma(x), \sigma(y)\} = \sigma(x) \).

\[\implies \mu(x) < \mu(y) \text{ and } \sigma(x) < \sigma(y). \]

\[\implies \mu(x + y) = \mu(x) \text{ and } \sigma(x + y) = \sigma(x), \text{ by proposition 4.8.} \]

\[\implies \mu(x + y) < \sigma(x + y), \text{ by (1) and (3).} \]

Case (ii)

Let \(\min\{\mu(x), \mu(y)\} = \mu(y) \) and \(\min\{\sigma(x), \sigma(y)\} = \sigma(y) \).

\[\implies \mu(y) < \mu(x) \text{ and } \sigma(y) < \sigma(x). \]

\[\implies \mu(x + y) = \mu(y) \text{ and } \sigma(x + y) = \sigma(y), \text{ by proposition 4.8.} \]

\[\implies \mu(x + y) < \sigma(x + y), \text{ by (1) and (4).} \]

Case (iii)

Let \(\min\{\mu(x), \mu(y)\} = \mu(x) \), min\{\sigma(x), \sigma(y)\} = \sigma(y) \).

\[\implies \mu(x) < \mu(y) \text{ and } \sigma(y) < \sigma(x). \]

\[\implies \mu(x + y) = \mu(x) \text{ and } \sigma(x + y) = \sigma(y), \text{ by proposition 4.8.} \]

\[\implies \mu(x + y) < \sigma(x + y), \text{ by (1) and (5).} \]

From (1) and (5), we have \(\mu(x) < \mu(y) < \sigma(y) \implies \mu(x) < \sigma(y) \).

\[\implies \mu(x + y) < \sigma(x + y), \text{ by (6).} \]
Case (iv)
Let \(\min\{\mu(x), \mu(y)\} = \mu(y), \min\{\sigma(x), \sigma(y)\} = \sigma(x) \).
\[\implies \mu(y) < \mu(x) \text{ and } \sigma(x) < \sigma(y). \quad (7) \]
\[\implies \mu(x + y) = \mu(y) \text{ and } \sigma(x + y) = \sigma(x), \text{ by proposition 4.8.} \quad (8) \]
From (1) and (7), we have \(\mu(y) < \mu(x) < \sigma(x) \).
\[\implies \mu(y) < \sigma(x). \]
\[\implies \mu(x + y) < \sigma(x + y), \text{ by (8).} \]
Thus for all \(x, y \in L_N \), \(\mu(x + y) < \sigma(x + y) \) in all cases.

Theorem 4.1. Let \(S \) be any nonempty proper subset of \(L_N \). If \(\mu \) is a fuzzy \(\ell \)-ideal of \(L_N \), defined by \(\mu(x) = \begin{cases} g & \text{if } x \in S \\ h & \text{if } x \in L_N - S \end{cases} \), where \(g, h \in [0, 1] \) with \(g > h \), then \(S \) is a \(\ell \)-ideal of \(L_N \).

Proof:
Given that \(\mu \) is a fuzzy \(\ell \)-ideal of \(L_N \) and \(\mu(x) = \begin{cases} g & \text{if } x \in S \\ h & \text{if } x \in L_N - S \end{cases} \) where \(g, h \in [0, 1] \) with \(g > h \).
To prove that \(S \) is a \(\ell \)-ideal of \(L_N \).
It is enough to prove the following:

(i) \(x, y \in S \Rightarrow x - y, x \lor y \in S; \)

(ii) \(n + x - n \in S, \text{ for all } x \in S \text{ and } n \in L_N; \)

(iii) \(n \in L_N \text{ and } x \in S \Rightarrow nx \in S; \)

(iv) \((n + i)n' - nn' \in S, \text{ for all } n, n' \in L_N \text{ and } i \in S; \)

(v) \(n \in N \text{ and } x \in S \text{ with } n \leq x \Rightarrow n \in S. \)

For (i)
Let \(x, y \in S \). Then \(\mu(x) = \mu(y) = g \) and \(\min\{\mu(x), \mu(y)\} = g \).

48
\[\Rightarrow \text{all the values of } \mu(x - y) \text{ and } \mu(x \lor y) \text{ are greater than or equal to } g. \]

But \(\mu \) has only two values \(g \) and \(h \) with \(g > h \). So, all values of \(\mu(x - y) \) and \(\mu(x \lor y) \) are equal to \(g \). Thus \(x - y, x \lor y \in S \).

For (ii)

Let \(x \in S \). Then \(\mu(x) = g \).
\[\Rightarrow \mu(x) = \mu(n + x - n), \text{ since } \mu \text{ is a fuzzy } \ell\text{-ideal and for all } n \in \mathcal{L}_N. \]
\[\Rightarrow \mu(n + x - n) = g. \]
\[\Rightarrow n + x - n \in S. \]

For (iii)

Let \(x \in S \) and \(n \in \mathcal{L}_N \). Then \(\mu(x) = g \).
\[\Rightarrow \mu(nx) \geq \mu(x), \text{ since } \mu \text{ is a fuzzy } \ell\text{-ideal.} \]
\[\Rightarrow \mu(nx) = g. \]
\[\Rightarrow nx \in S. \]

For (iv)

Let \(n, n' \in \mathcal{L}_N \) and \(i \in S \). Then \(\mu(i) = g \).
\[\Rightarrow \mu((n + i)n' - nn') \geq \mu(i), \text{ since } \mu \text{ is a fuzzy } \ell\text{-ideal.} \]
\[\Rightarrow \mu((n + i)n' - nn') \geq g. \]
\[\Rightarrow (n + i)n' - nn' \in S. \]

For (v)

Let \(x \in S \) and \(n \leq x \). Then \(\mu(x) = g \).

As \(n \leq x \), then \(\mu(n) \geq \mu(x) \), by proposition 4.6.
\[\Rightarrow \mu(n) = g. \]
\[\Rightarrow n \in S. \]

Hence \(S \) is a \(\ell \)-ideal of \(\mathcal{L}_N \).

Proposition 4.10. If \(\mu \) is a fuzzy \(\ell \)-ideal of \(\mathcal{L}_N \), then the level subsets \(\mu_t \), \(t \in [0, 1] \) are \(\ell \)-ideals of \(\mathcal{L}_N \).
Proof:

Given that μ is a fuzzy ℓ-ideal of \mathcal{L}_N and let $\mu_t = \{x \in \mathcal{L}_N : \mu(x) \geq t\}$ where $t \in [0, 1]$. To prove that the level subsets μ_t are ℓ-ideals of \mathcal{L}_N.

We known that $\mu(0) \geq \mu(x)$, for all $x \in \mathcal{L}_N$.

$\implies \mu(0) \geq t$, for all $t \in [0, 1]$.

$\implies 0 \in \mu_t$ for all t.

$\implies \mu_t \neq \phi$.

Now we prove that the level subsets μ_t, $t \in [0, 1]$ are ℓ-ideal of \mathcal{L}_N.

It is enough to prove that μ_t satisfies the following:

(i) $x, y \in \mu_t \implies x \land y \in \mu_t$;

(ii) $n + x - n \in \mu_t$, for all $x \in \mu_t$ and $n \in \mathcal{L}_N$;

(iii) $n \in \mathcal{L}_N$ and $x \in \mu_t \implies nx \in \mu_t$;

(iv) $(n + i)n' - nn' \in \mu_t$, for all $n, n' \in \mathcal{L}_N$ and $i \in \mu_t$;

(v) $n \in \mathcal{L}_N$ and $x \in \mu_t$ with $n \preceq x \implies n \in \mu_t$.

For (i)

Let $x, y \in \mu_t$. Then $\mu(x) \geq t$, $\mu(y) \geq t$ and $\min\{\mu(x), \mu(y)\} \geq t$.

$\implies \mu(x \land y) \geq \min\{\mu(x), \mu(y)\}$, $\mu(x \lor y) \geq \min\{\mu(x), \mu(y)\}$, since μ is a fuzzy ℓ-ideal.

$\implies \mu(x \land y) \geq t$, $\mu(x \lor y) \geq t$.

$\implies x \land y, x \lor y \in \mu_t$.

For (ii)

Let $x \in \mu_t$. Then $\mu(x) \geq t$.

$\implies \mu(x) = \mu(n + x - n)$, since μ is a fuzzy ℓ-ideal.

$\implies \mu(n + x - n) \geq t$.

$\implies n + x - n \in \mu_t$.

50
For (iii)
Let \(x \in \mu_t \) and \(n \in \mathcal{L}_N \). Then \(\mu(x) \geq t \).
\[\implies \mu(nx) \geq \mu(x), \text{ since } \mu \text{ is a fuzzy } \ell\text{-ideal.} \]
\[\implies \mu(nx) \geq t. \]
\[\implies nx \in \mu_t. \]

For (iv)
Let \(n, n' \in \mathcal{L}_N \) and \(i \in \mu_t \). Then \(\mu(i) \geq t \).
\[\implies \mu((n + i)n' - nn') \geq \mu(i), \text{ since } \mu \text{ is a fuzzy } \ell\text{-ideal.} \]
\[\implies \mu((n + i)n' - nn') \geq t. \]
\[\implies ((n + i)n' - nn') \in \mu_t. \]

For (v)
Let \(x \in \mu_t \) and \(n \leq x \). Then \(\mu(x) \geq t \).
\[\implies \mu(n) \geq \mu(x), \text{ by proposition 4.6.} \]
\[\implies \mu(n) \geq t. \]
\[\implies n \in \mu_t. \]

Hence the level subsets \(\mu_t \) are \(\ell\text{-ideal of } \mathcal{L}_N \).

Theorem 4.2. Characterization Theorem A fuzzy subset \(\mu \) of a \(\ell\text{-near ring } \mathcal{L}_N \), is a fuzzy \(\ell\text{-ideal of } \mathcal{L}_N \) if and only if the level subset \(\mu_t \), where \(t \in \text{Im}(\mu) \subseteq [0, 1] \) is a \(\ell\text{-ideal of } \mathcal{L}_N \).

Proof:
Assume that \(\mu \) is a fuzzy \(\ell\text{-ideal of } \mathcal{L}_N \).

To prove that the level subset \(\mu_t \) where \(t \in \text{Im}(\mu) \) is an \(\ell\text{-ideal of } \mathcal{L}_N \).

By the proposition 4.10, we get the proof of this part.

Conversely, assume that the level subset \(\mu_t, t \in \text{Im}(\mu) \) is an \(\ell\text{-ideal of } \mathcal{L}_N \).

To prove that \(\mu \) is a fuzzy \(\ell\text{-ideal of } \mathcal{L}_N \).

It is enough to prove \(\mu \) satisfies the following axioms:

(i) \(\mu(x - y) \geq \min\{\mu(x), \mu(y)\} \);
(ii) \(\mu(xy) \geq \min\{\mu(x), \mu(y)\}\);

(iii) \(\mu(x \lor y) \geq \min\{\mu(x), \mu(y)\}\);

(iv) \(\mu(x \land y) \geq \max\{\mu(x), \mu(y)\}\);

(v) \(\mu(x) = \mu(y + x - y)\);

(vi) \(\mu(xy) \geq \mu(y)\);

(vii) \(\mu((x + i)y - xy) \geq \mu(i)\) for all \(x, y, i \in \mathcal{L}_N\);

Let \(x, y \in \mathcal{L}_N\) be arbitrary.

For (i), (ii), (iii)

Let \(\min\{\mu(x), \mu(y)\} = t_1\).

\[\implies\] either \(\mu(x) = t_1\) and \(\mu(y) \geq \mu(x) = t_1\) or \(\mu(y) = t_1\) and \(\mu(x) \geq \mu(y) = t_1\).

\[\implies\] \(\mu(x) \geq t_1, \mu(y) \geq t_1\).

\[\implies\] \(x, y \in \mu_t\).

\[\implies\] \(x - y, xy, x \lor y \in \mu_t\), since \(\mu_t\) is a \(\ell\)-ideal.

\[\implies\] \(\mu(x - y) \geq t_1, \mu(xy) \geq t_1, \mu(x \lor y) \geq t_1\).

\[\implies\] \(\mu(x - y) \geq \min\{\mu(x), \mu(y)\}, \mu(xy) \geq \min\{\mu(x), \mu(y)\}\).

\[\mu(x \lor y) \geq \min\{\mu(x), \mu(y)\}\).

For (iv)

Let \(\max\{\mu(x), \mu(y)\} = t_2\).

Case (i) Let \(\max\{\mu(x), \mu(y)\} = \mu(x)\).

\[\implies\] \(\mu(x) = t_2\).

\[\implies\] \(x \land y \in \mu_t\), since \(\mu_t\) is a \(\ell\)-ideal of \(\mathcal{L}_N\) and \(x \land y \leq x\), as \(x \in \mu_t\).

\[\implies\] \(\mu(x \land y) \geq t_2 = \max\{\mu(x), \mu(y)\}\).

\[\implies\] \(\mu(x \land y) \geq \max\{\mu(x), \mu(y)\}\).

Case (ii) Let \(\max\{\mu(x), \mu(y)\} = \mu(y)\).

\[\implies\] \(\mu(y) = t_2\).
\[\Rightarrow x \land y \in \mu_{t_2}, \text{ since } \mu_{t_2} \text{ is a } \ell\text{-ideal of } \mathcal{L}_N \text{ and } y \in \mu_{t_2}, \text{ as } x \land y \leq y. \]

\[\Rightarrow \mu(x \land y) \geq t_2 = \max\{\mu(x), \mu(y)\}. \]

\[\Rightarrow \mu(x \land y) \geq \max\{\mu(x), \mu(y)\}. \]

For (v)

Let \(t \in [0, 1] \) such that \(\mu(x) = t \).

\[\Rightarrow x \in \mu_t, \]

\[\Rightarrow x = y + x - y, \text{ since } (\mu_t, +) \text{ is a normal subgroup of } (\mathcal{L}_N, +). \]

\[\Rightarrow \mu(x) = \mu(y + x - y). \]

For (vi)

Let \(t_1 \in [0, 1] \) such that \(t_1 = \mu(y) \).

\[\Rightarrow y \in \mu_{t_1}, \]

\[\Rightarrow xy \in \mu_{t_1}, \text{ since } \mu_{t_1} \text{ is a } \ell\text{-ideal and } x \in \mathcal{L}_N, \]

\[\Rightarrow \mu(xy) \geq t_1 = \mu(y). \]

\[\Rightarrow \mu(xy) \geq \mu(y). \]

For (vii)

Let \(i \in \mathcal{L}_N \) and \(t_2 \in [0, 1] \) such that \(\mu(i) = t_2 \).

\[\Rightarrow (x + i)y - xy \in \mu_{t_2}, \text{ since } \mu_{t_2} \text{ is a } \ell\text{-ideal of } \mathcal{L}_N. \]

\[\Rightarrow \mu((x + i)y - xy) \geq t_2 = \mu(i). \]

\[\Rightarrow \mu((x + i)y - xy) \geq \mu(i). \]

Hence \(\mu \) is a \(\ell\)-ideal of \(\mathcal{L}_N \).

Theorem 4.3. If \(I \) is a \(\ell\)-ideal of \(\mathcal{L}_N \), then there exists a fuzzy \(\ell\)-ideal \(\mu \) of \(\mathcal{L}_N \) such that \(\mu_t = I \), for any \(t \in (0, 1) \).

Proof:

Assume that \(I \) is a \(\ell\)-ideal of \(\mathcal{L}_N \).

To prove that there exists a fuzzy \(\ell\)-ideal \(\mu \) of \(\mathcal{L}_N \) such that \(\mu_t = I \).

Let \(\mu : \mathcal{L}_N \rightarrow [0, 1] \) be a fuzzy set defined by \(\mu(x) = \begin{cases} t & \text{if } x \in I \\ 0 & \text{if } x \notin I \end{cases} \)

53
where \(t \) is a fixed number in \((0, 1)\). Then clearly \(\mu_t = I \).

Next we prove \(\mu \) is a fuzzy \(\ell \)-ideal of \(\mathcal{L}_N \).

It is enough to prove \(\mu \) satisfies the following conditions:

\begin{itemize}
 \item [(i)] \(\mu(x - y) \geq \min\{\mu(x), \mu(y)\} \);
 \item [(ii)] \(\mu(xy) \geq \min\{\mu(x), \mu(y)\} \);
 \item [(iii)] \(\mu(x \lor y) \geq \min\{\mu(x), \mu(y)\} \);
 \item [(iv)] \(\mu(x \land y) \geq \max\{\mu(x), \mu(y)\} \);
 \item [(v)] \(\mu(x) = \mu(y + x - y) \);
 \item [(vi)] \(\mu(xy) \geq \mu(y) \);
 \item [(vii)] \(\mu((x + i)y - xy) \geq \mu(i) \), for all \(x, y, i \in \mathcal{L}_N \).
\end{itemize}

Let \(x, y, i \in \mathcal{L}_N \) be arbitrary.

For \((i), (ii), (iii), (iv)\)

Case (i) \quad \text{Let } x, y \in I.

Then \(\mu(x) = \mu(y) = t \) and \(\min\{\mu(x), \mu(y)\} = \max\{\mu(x), \mu(y)\} = t \).

Since \(I \) is a \(\ell \)-ideal of \(\mathcal{L}_N \), then \(x - y, xy, x \lor y \in I \) and \(x \land y \in I \), as \(x \land y \leq x \).

\[\Rightarrow \mu(x - y) = \mu(xy) = \mu(x \lor y) = \mu(x \land y) = t . \]

\[\Rightarrow \mu(x - y) \geq \min\{\mu(x), \mu(y)\}, \mu(xy) \geq \min\{\mu(x), \mu(y)\}; \]

\[\mu(x \lor y) \geq \min\{\mu(x), \mu(y)\}, \mu(x \land y) \geq \max\{\mu(x), \mu(y)\} \].

Case (ii) \quad \text{Let } x, y \notin I.

Then \(\mu(x) = \mu(y) = 0 \) and \(\min\{\mu(x), \mu(y)\} = \max\{\mu(x), \mu(y)\} = 0 \).

Here \(x \lor y, x \land y, x - y, xy \) may either belong to \(I \) or to \(\mathcal{L}_N \).

So their images under \(\mu \) will be either \(t \) or \(0 \).

If \(\mu(x - y) = t \), then \(\mu(x - y) = t \geq 0 = \min\{\mu(x), \mu(y)\} \);

If \(\mu(x - y) = 0 \), then \(\mu(x - y) = 0 = \min\{\mu(x), \mu(y)\} \);
If \(\mu(xy) = t \), then \(\mu(xy) = t \geq 0 = \min\{\mu(x), \mu(y)\} \);
If \(\mu(xy) = 0 \), then \(\mu(xy) = 0 = \min\{\mu(x), \mu(y)\} \);
If \(\mu(x \lor y) = t \), then \(\mu(x \lor y) = t \geq 0 = \min\{\mu(x), \mu(y)\} \);
If \(\mu(x \lor y) = 0 \), then \(\mu(x \lor y) = 0 = \min\{\mu(x), \mu(y)\} \);
If \(\mu(x \land y) = t \), then \(\mu(x \land y) = t \geq 0 = \max\{\mu(x), \mu(y)\} \);
If \(\mu(x \land y) = 0 \), then \(\mu(x \land y) = 0 = \max\{\mu(x), \mu(y)\} \).

Case (iii) Let \(x \in I \) and \(y \notin I \).
Then \(\mu(x) = t \), \(\mu(y) = 0 \) and \(\min\{\mu(x), \mu(y)\} = 0 \), \(\max\{\mu(x), \mu(y)\} = t \).
Here \(x - y, xy, x \lor y \) may either belong to \(I \) or to \(\mathcal{L}_N \). So their images under \(\mu \) will be either \(t \) or \(0 \). Then by case (ii), we have \(\mu(x - y) \geq \min\{\mu(x), \mu(y)\} \), \(\mu(xy) \geq \min\{\mu(x), \mu(y)\} \), \(\mu(x \lor y) \geq \min\{\mu(x), \mu(y)\} \).
Since \(I \) is a \(t \)-ideal of \(\mathcal{L}_N \) and as \(x \land y \leq x \), then we have \(x \land y \in I \).
\[\implies \mu(x \land y) = t = \max\{\mu(x), \mu(y)\} \]

For (v)
Assume that \(\mu(x) > \mu(y + x - y) \), for some \(x, y \in \mathcal{L}_N \).
\[\implies \mu(x) = t \) and \(\mu(y + x - y) = 0 \), since \(\mu \) is two valued.
\[\implies x \in I \) and \(y + x - y \notin I \).
Which is a contradiction to \((I, +) \) is a normal subgroup of \((\mathcal{L}_N, +) \).
Therefore \(\mu(x) \leq \mu(y + x - y) \). \hfill (1)

Suppose that \(\mu(y + x - y) > \mu(x) \).
\[\implies \mu(x) = 0 \) and \(\mu(y + x - y) = t \), since \(\mu \) is two valued.
\[\implies x \notin I \) and \(y + x - y \in I \).
Since \((I, +) \) is a normal subgroup of \((\mathcal{L}_N, +) \), then we can write
\(x = x + (y + x - y) - x \) and thus \(x \in I \).
Which is a contradiction to \(x \notin I \).
Therefore \(\mu(x) \geq \mu(y + x - y) \). \hfill (2)
Hence \(\mu(x) = \mu(y + x - y) \), by (1) and (2).
For (vi)
Assume that \(\mu(xy) < \mu(y) \), for some \(x, y \in \mathcal{L}_N \).
\[\implies \mu(y) = t \text{ and } \mu(xy) = 0, \text{ since } \mu \text{ is two valued.} \]
\[\implies y \in I \text{ and } xy \notin I. \]
Which is a contradiction to \(I \) is a \(\ell \)-ideal.
Hence \(\mu(xy) \geq \mu(y) \).

For (vii)
Assume that \(\mu((x+i)y - xy) < \mu(i) \), for some \(x, y, i \in \mathcal{L}_N \).
\[\implies \mu((x+i)y - xy) = 0 \text{ and } \mu(i) = t, \text{ since } \mu \text{ is two valued.} \]
\[\implies i \in I \text{ and } ((x+i)y - xy) \notin I. \]
Which is a contradiction to \(I \) is a \(\ell \)-ideal.
\[\implies \mu((x+i)y - xy) \geq \mu(i). \]
Hence \(\mu \) is a fuzzy \(\ell \)-ideal of \(\mathcal{L}_N \).

Definition 4.2. Let \(\mu \) be a fuzzy \(\ell \)-ideal of \(\mathcal{L}_N \). Then the \(\ell \)-ideal \(\mu_t \) of \(\mu, t \in [0,1] \) with \(t \leq \mu(0) \) is called a level \(\ell \)-ideal of \(\mu \).

Proposition 4.11. Two level \(\ell \)-ideals \(\mu_{t_1} \) and \(\mu_{t_2} \) with \(t_1 < t_2 \) of a fuzzy \(\ell \)-ideal \(\mu \) of \(\mathcal{L}_N \) are equal if and only if there is no \(x \in \mathcal{L}_N \) such that \(t_1 \leq \mu(x) < t_2 \).

Proof:
Given that \(\mu_{t_1} \) and \(\mu_{t_2} \) are two level \(\ell \)-ideals of a fuzzy \(\ell \)-ideal \(\mu \) of \(\mathcal{L}_N \).
Assume that \(\mu_{t_1} \) and \(\mu_{t_2} \) are equal with \(t_1 < t_2 \).
To prove that there is no \(x \in \mathcal{L}_N \) such that \(t_1 \leq \mu(x) < t_2 \).
Suppose that there is an \(x \in \mathcal{L}_N \) such that \(t_1 \leq \mu(x) < t_2 \).
\[\implies \mu(x) \leq t_1 \text{ and } \mu(x) \geq t_2. \]
\[\implies x \notin \mu_{t_1} \text{ and } x \in \mu_{t_2}. \]
Which is a contradiction to \(\mu_{t_1} = \mu_{t_2} \).
Therefore there is no \(x \in \mathcal{L}_N \) such that \(t_1 \leq \mu(x) < t_2 \).

Conversely, assume that there is no \(x \in \mathcal{L}_N \) such that \(t_1 \leq \mu(x) < t_2 \).

To prove that \(\mu_{t_1} \) and \(\mu_{t_2} \) are equal.

Let \(\mu_{t_1} = \{ x \in \mathcal{L}_N : \mu(x) \geq t_1 \} \) and \(\mu_{t_2} = \{ x \in \mathcal{L}_N : \mu(x) \geq t_2 \} \) with \(t_1 < t_2 \).

Then clearly \(\mu_{t_2} \subseteq \mu_{t_1} \). It is enough to prove that \(\mu_{t_1} \subseteq \mu_{t_2} \).

Let \(x \in \mu_{t_1} \). Then \(\mu(x) \geq t_1 \). Also \(\mu(x) \geq t_2 \), since \(\mu(x) \not\in t_2 \) and so \(x \in \mu_{t_2} \).

Hence \(\mu_{t_1} \subseteq \mu_{t_2} \).

Theorem 4.4. Let \(\mu \) be any fuzzy \(\ell \)-ideal of \(\mathcal{L}_N \). Let \(\mu_{t_1} \) and \(\mu_{t_2} \) be any two level \(\ell \)-ideals of \(\mu \). Then

1. \(\mu_{t_1} \cup \mu_{t_2} = \{ x \in \mathcal{L}_N : \mu(x) \geq \min\{t_1, t_2\} \} \);

2. \(\mu_{t_1} \cap \mu_{t_2} = \{ x \in \mathcal{L}_N : \mu(x) \geq \max\{t_1, t_2\} \} \).

are also level \(\ell \)-ideals of \(\mu \).

Proof:

Given that \(\mu \) is a fuzzy \(\ell \)-ideal of \(\mathcal{L}_N \) and let \(\mu_{t_1} \) and \(\mu_{t_2} \) be any two level \(\ell \)-ideals of \(\mathcal{L}_N \). To prove that (1) and (2) are level \(\ell \)-ideals of \(\mu \).

For (1)

It is enough to prove following axioms:

(i) \(x, y \in \mu_{t_1} \cup \mu_{t_2} \Rightarrow x - y, x \lor y \in \mu_{t_1} \cup \mu_{t_2} \);

(ii) \(n + x - n \in \mu_{t_1} \cup \mu_{t_2} \), for all \(x \in \mu_{t_1} \cup \mu_{t_2} \) and \(n \in \mathcal{L}_N \);

(iii) \(n \in \mathcal{L}_N, x \in \mu_{t_1} \cup \mu_{t_2} \Rightarrow nx \in \mu_{t_1} \cup \mu_{t_2} \);

(iv) \((n + i)n' - nn' \in \mu_{t_1} \cup \mu_{t_2} \), for all \(i \in \mu_{t_1} \cup \mu_{t_2} \) and \(n, n' \in \mathcal{L}_N \);

(v) \(x \in \mu_{t_1} \cup \mu_{t_2} \) and \(n \in \mathcal{L}_N \) with \(n \leq x \Rightarrow n \in \mu_{t_1} \cup \mu_{t_2} \).
For (i)

Let \(x, y \in \mu_1 \cup \mu_2 \).

Then \(x, y \in \mathcal{L}_N \) such that \(\mu(x) \geq \min\{t_1, t_2\} \) and \(\mu(y) \geq \min\{t_1, t_2\} \).

If \(\min\{t_1, t_2\} = t_1 \), then \(x, y \in \mathcal{L}_N \) such that \(\mu(x) \geq t_1 \) and \(\mu(y) \geq t_1 \).

\[\implies x, y \in \mu_1. \]

\[\implies x - y, x \lor y \in \mu_1, \text{ since } \mu_1 \text{ is a } \ell\text{-ideal of } \mathcal{L}_N. \]

\[\implies x - y, x \lor y \in \mathcal{L}_N \text{ such that } \mu(x - y) \geq t_1, \mu(x \lor y) \geq t_1. \]

\[\implies x - y, x \lor y \in \mathcal{L}_N \text{ such that } \mu(x - y) \geq \min\{t_1, t_2\}, \mu(x \lor y) \geq \min\{t_1, t_2\}. \]

\[\implies x - y, x \lor y \in \mu_1 \cup \mu_2. \]

If \(\min\{t_1, t_2\} = t_2 \), then \(x, y \in \mathcal{L}_N \) such that \(\mu(x) \geq t_2 \) and \(\mu(y) \geq t_2 \).

\[\implies x, y \in \mu_2. \]

\[\implies x - y, x \lor y \in \mu_2, \text{ since } \mu_2 \text{ is a } \ell\text{-ideal of } \mathcal{L}_N. \]

\[\implies x - y, x \lor y \in \mathcal{L}_N \text{ such that } \mu(x - y) \geq t_2, \mu(x \lor y) \geq t_2. \]

\[\implies x - y, x \lor y \in \mathcal{L}_N \text{ such that } \mu(x - y) \geq \min\{t_1, t_2\}, \mu(x \lor y) \geq \min\{t_1, t_2\}. \]

\[\implies x - y, x \lor y \in \mu_1 \cup \mu_2. \]

For (ii)

Let \(x \in \mu_1 \cup \mu_2 \). Then \(x \in \mathcal{L}_N \) such that \(\mu(x) \geq \min\{t_1, t_2\} \).

If \(\min\{t_1, t_2\} = t_1 \), then \(\mu(x) \geq t_1 \).

\[\implies x \in \mu_1 \text{ such that } x = n + x - n, \text{ since } \mu_1 \text{ is a } \ell\text{-ideal and for all } n \in \mathcal{L}_N. \]

\[\implies \mu(x) = \mu(n + x - n). \]

\[\implies \mu(n + x - n) \geq t_1 = \min\{t_1, t_2\}. \]

\[\implies n + x - n \in \mu_1 \cup \mu_2. \]

If \(\min\{t_1, t_2\} = t_2 \), then \(\mu(x) \geq t_2 \).

\[\implies x \in \mu_2 \text{ such that } x = n + x - n, \text{ since } \mu_2 \text{ is a } \ell\text{-ideal and for all } n \in \mathcal{L}_N. \]

\[\implies \mu(x) = \mu(n + x - n). \]

\[\implies \mu(n + x - n) \geq t_2 = \min\{t_1, t_2\}. \]

\[\implies n + x - n \in \mu_1 \cup \mu_2. \]
For (iii)
Let \(x \in \mu_1 \cup \mu_2 \) and \(n \in \mathcal{L}_N \).
Then \(x \in \mathcal{L}_N \) such that \(\mu(x) \geq \min\{t_1, t_2\} \).
If \(\min\{t_1, t_2\} = t_1 \), then \(\mu(x) \geq t_1 \).
\[\implies x \in \mu_1. \]
\[\implies nx \in \mu_1, \text{ since } \mu_1 \text{ is a } \ell \text{-ideal of } \mathcal{L}_N. \]
\[\implies \mu(nx) \geq t_1. \]
\[\implies \mu(nx) \geq \min\{t_1, t_2\}. \]
\[\implies nx \in \mu_1 \cup \mu_2. \]
If \(\min\{t_1, t_2\} = t_2 \), then \(\mu(x) \geq t_2 \).
\[\implies x \in \mu_2. \]
\[\implies nx \in \mu_2, \text{ since } \mu_2 \text{ is a } \ell \text{-ideal of } \mathcal{L}_N. \]
\[\implies \mu(nx) \geq t_2. \]
\[\implies \mu(nx) \geq \min\{t_1, t_2\}. \]
\[\implies nx \in \mu_1 \cup \mu_2. \]

For (iv)
Let \(i \in \mu_1 \cup \mu_2 \) and \(n, n' \in \mathcal{L}_N \).
Then \(i \in \mathcal{L}_N \) such that \(\mu(i) \geq \min\{t_1, t_2\} \).
If \(\min\{t_1, t_2\} = t_1 \), then \(\mu(i) \geq t_1 \).
\[\implies i \in \mu_1. \]
\[\implies (n + i)n' - nn' \in \mu_1, \text{ since } \mu_1 \text{ is a } \ell \text{-ideal of } \mathcal{L}_N. \]
\[\implies \mu((n + i)n' - nn') \geq t_1. \]
\[\implies \mu((n + i)n' - nn') \geq \min\{t_1, t_2\}. \]
\[(n + i)n' - nn' \in \mu_1 \cup \mu_2. \]
If \(\min\{t_1, t_2\} = t_2 \), then \(\mu(i) \geq t_2 \).
\[\implies i \in \mu_2. \]
\[\implies (n + i)n' - nn' \in \mu_2, \text{ since } \mu_2 \text{ is a } \ell \text{-ideal of } \mathcal{L}_N. \]
\[\Rightarrow \mu((n + i)n' - nn') \geq t_2. \]
\[\Rightarrow \mu((n + i)n' - nn') \geq \min\{t_1, t_2\}. \]
\[\Rightarrow (n + i)n' - nn' \in \mu_1 \cup \mu_2. \]

For (v)

Let \(x \in \mu_1 \cup \mu_2 \) and \(n \in \mathcal{L}_N \) with \(n \leq x \).
Then \(x \in \mathcal{L}_N \) such that \(\mu(x) \geq \min\{t_1, t_2\} \).
If \(\min\{t_1, t_2\} = t_1 \), then \(\mu(x) \geq t_1 \).
\[\Rightarrow x \in \mu_1 \text{ with } n \leq x. \]
\[\Rightarrow \mu(n) \geq \mu(x), \text{ by proposition 4.6.} \]
\[\Rightarrow \mu(n) \geq t_1. \]
\[\Rightarrow n \in \mu_1 \cup \mu_2. \]
If \(\min\{t_1, t_2\} = t_2 \), then \(\mu(x) \geq t_2 \).
\[\Rightarrow x \in \mu_2 \text{ with } n \leq x. \]
\[\Rightarrow \mu(n) \geq \mu(x), \text{ by proposition 4.6.} \]
\[\Rightarrow \mu(n) \geq t_2. \]
\[\Rightarrow n \in \mu_1 \cup \mu_2. \]

Hence \(\mu_1 \cup \mu_2 \) is a level \(\ell \)-ideal of \(\mathcal{L}_N \).

For (2)

It is enough to prove following axioms:

(i) \(x, y \in \mu_1 \cap \mu_2 \Rightarrow x - y, x \lor y \in \mu_1 \cap \mu_2; \)

(ii) \(n + x - n \in \mu_1 \cap \mu_2 \), for all \(x \in \mu_1 \cap \mu_2 \) and \(n \in \mathcal{L}_N; \)

(iii) \(n \in \mathcal{L}_N, x \in \mu_1 \cap \mu_2 \Rightarrow nx \in \mu_1 \cap \mu_2; \)

(iv) \((n + i)n' - nn' \in \mu_1 \cap \mu_2 \), for all \(i \in \mu_1 \cup \mu_2 \) and \(n, n' \in \mathcal{L}_N; \)

(v) \(x \in \mu_1 \cap \mu_2 \) and \(n \in \mathcal{L}_N \) with \(n \leq x \Rightarrow n \in \mu_1 \cap \mu_2. \)
For(i)
Let \(x, y \in \mu_{t_1} \cap \mu_{t_2}\).
Then \(x, y \in \mathcal{L}_N\) such that \(\mu(x) \geq \max\{t_1, t_2\}\) and \(\mu(y) \geq \max\{t_1, t_2\}\).
If \(\max\{t_1, t_2\} = t_1\), then \(x, y \in \mathcal{L}_N\) such that \(\mu(x) \geq t_1\) and \(\mu(y) \geq t_1\).
\(\implies x, y \in \mu_{t_1}\).
\(\implies x - y, x \lor y \in \mu_{t_1}\), since \(\mu_{t_1}\) is a \(\ell\)-ideal of \(\mathcal{L}_N\).
\(\implies x - y, x \lor y \in \mathcal{L}_N\) such that \(\mu(x - y) \geq t_1, \mu(x \lor y) \geq t_1\).
\(\implies x - y, x \lor y \in \mathcal{L}_N\) such that \(\mu(x - y) \geq \max\{t_1, t_2\}, \mu(x \lor y) \geq \max\{t_1, t_2\}\).
\(\implies x - y, x \lor y \in \mu_{t_1} \cap \mu_{t_2}\).
If \(\max\{t_1, t_2\} = t_2\), then \(x, y \in \mathcal{L}_N\) such that \(\mu(x) \geq t_2\) and \(\mu(y) \geq t_2\).
\(\implies x, y \in \mu_{t_2}\).
\(\implies x - y, x \lor y \in \mu_{t_2}\), since \(\mu_{t_2}\) is a \(\ell\)-ideal of \(\mathcal{L}_N\).
\(\implies x - y, x \lor y \in \mathcal{L}_N\) such that \(\mu(x - y) \geq t_2, \mu(x \lor y) \geq t_2\).
\(\implies x - y, x \lor y \in \mathcal{L}_N\) such that \(\mu(x - y) \geq \max\{t_1, t_2\}, \mu(x \lor y) \geq \max\{t_1, t_2\}\).
\(\implies x - y, x \lor y \in \mu_{t_1} \cap \mu_{t_2}\).
For(ii)
Let \(x \in \mu_{t_1} \cap \mu_{t_2}\). Then \(x \in \mathcal{L}_N\) such that \(\mu(x) \geq \max\{t_1, t_2\}\).
If \(\max\{t_1, t_2\} = t_1\), then \(\mu(x) \geq t_1\).
\(\implies x \in \mu_{t_1}\) such that \(x = n + x - n\), since \(\mu_{t_1}\) is a \(\ell\)-ideal and for all \(n \in \mathcal{L}_N\).
\(\implies \mu(x) = \mu(n + x - n)\).
\(\implies \mu(n + x - n) \geq t_1 = \max\{t_1, t_2\}\).
\(\implies n + x - n \in \mu_{t_1} \cap \mu_{t_2}\).
If \(\max\{t_1, t_2\} = t_2\), then \(\mu(x) \geq t_2\).
\(\implies x \in \mu_{t_2}\) such that \(x = n + x - n\), since \(\mu_{t_2}\) is a \(\ell\)-ideal and for all \(n \in \mathcal{L}_N\).
\(\implies \mu(x) = \mu(n + x - n)\).
\(\implies \mu(n + x - n) \geq t_2 = \max\{t_1, t_2\}\).
\(\implies n + x - n \in \mu_{t_1} \cap \mu_{t_2}\).
For (iii)
Let \(x \in \mu_{t_1} \cap \mu_{t_2} \) and \(n \in \mathcal{L}_N \).

Then \(x \in \mathcal{L}_N \) such that \(\mu(x) \geq \max\{t_1, t_2\} \).

If \(\max\{t_1, t_2\} = t_1 \), then \(\mu(x) \geq t_1 \).

\[\Rightarrow x \in \mu_{t_1}, \]

\[\Rightarrow nx \in \mu_{t_1}, \text{ since } \mu_{t_1} \text{ is a } \ell \text{-ideal of } \mathcal{L}_N. \]

\[\Rightarrow \mu(nx) \geq t_1. \]

\[\Rightarrow \mu(nx) \geq \max\{t_1, t_2\}. \]

\[\Rightarrow nx \in \mu_{t_1} \cap \mu_{t_2}. \]

If \(\max\{t_1, t_2\} = t_2 \), then \(\mu(x) \geq t_2 \).

\[\Rightarrow x \in \mu_{t_2}, \]

\[\Rightarrow nx \in \mu_{t_2}, \text{ since } \mu_{t_2} \text{ is a } \ell \text{-ideal of } \mathcal{L}_N. \]

\[\Rightarrow \mu(nx) \geq t_2. \]

\[\Rightarrow \mu(nx) \geq \max\{t_1, t_2\}. \]

\[\Rightarrow nx \in \mu_{t_1} \cap \mu_{t_2}. \]

For (iv)
Let \(i \in \mu_{t_1} \cap \mu_{t_2} \) and \(n, n' \in \mathcal{L}_N \).

Then \(i \in \mathcal{L}_N \) such that \(\mu(i) \geq \max\{t_1, t_2\} \).

If \(\max\{t_1, t_2\} = t_1 \), then \(\mu(i) \geq t_1 \).

\[\Rightarrow i \in \mu_{t_1}, \]

\[\Rightarrow (n + i)n' - nn' \in \mu_{t_1}, \text{ since } \mu_{t_1} \text{ is a } \ell \text{-ideal of } \mathcal{L}_N. \]

\[\Rightarrow \mu((n + i)n' - nn') \geq t_1. \]

\[\Rightarrow \mu((n + i)n' - nn') \geq \max\{t_1, t_2\}. \]

\[\Rightarrow (n + i)n' - nn' \in \mu_{t_1} \cap \mu_{t_2}. \]

If \(\max\{t_1, t_2\} = t_2 \), then \(\mu(i) \geq t_2 \).

\[\Rightarrow i \in \mu_{t_2}, \]

\[\Rightarrow (n + i)n' - nn' \in \mu_{t_2}, \text{ since } \mu_{t_2} \text{ is a } \ell \text{-ideal of } \mathcal{L}_N. \]
\[\mu((n+i)n' - nn') \geq t_2.\]
\[\mu((n+i)n' - nn') \geq \max\{t_1, t_2\}.\]
\[(n+i)n' - nn' \in \mu_1 \cap \mu_2.\]

For \(n\)

Let \(x \in \mu_1 \cap \mu_2\) and \(n \in \mathcal{L}_N\) with \(n \leq x\).
Then \(x \in \mathcal{L}_N\) such that \(\mu(x) \geq \max\{t_1, t_2\}\).
If \(\max\{t_1, t_2\} = t_1\), then \(\mu(x) \geq t_1\).
\[x \in \mu_1\text{ with }n \leq x.\]
\[\mu(n) \geq \mu(x),\text{ since }\mu_1\text{ is a }\ell\text{-ideal of }\mathcal{L}_N\text{ and by proposition 4.6.}\]
\[\mu(n) \geq t_1.\]
\[\mu(n) \geq \max\{t_1, t_2\}.\]
\[n \in \mu_1 \cap \mu_2.\]
If \(\max\{t_1, t_2\} = t_2\), then \(\mu(x) \geq t_2\).
\[x \in \mu_2\text{ with }n \leq x.\]
\[\mu(n) \geq \mu(x),\text{ since }\mu_2\text{ is a }\ell\text{-ideal of }\mathcal{L}_N\text{ and by proposition 4.6.}\]
\[\mu(n) \geq t_2.\]
\[\mu(n) \geq \max\{t_1, t_2\}.\]
\[n \in \mu_1 \cap \mu_2.\]

Hence \(\mu_1 \cap \mu_2\) is a level \(\ell\)-ideal of \(\mathcal{L}_N\).

Theorem 4.5. Let \(\mu\) be any fuzzy \(\ell\)-ideal of \(\mathcal{L}_N\). If \(\text{Im } (\mu) = \{t_1, t_2, t_3, \ldots t_n\}\) with \(t_1 > t_2 > t_3 > \cdots > t_n\), then we have the following chain of level \(\ell\)-ideals of \(\mu\). That is \(\mu_1 \subseteq \mu_2 \subseteq \mu_3 \subseteq \cdots \subseteq \mu_n = \mathcal{L}_N\).

Proof:

Given that \(\mu\) is any fuzzy \(\ell\)-ideal of \(\mathcal{L}_N\) and let \(\text{Im } (\mu) = \{t_1, t_2, t_3, \ldots t_n\}\) with \(t_1 > t_2 > t_3 > \cdots > t_n\). \(\text{(1)}\)

To prove that \(\mu_1 \subseteq \mu_2 \subseteq \mu_3 \subseteq \cdots \subseteq \mu_n = \mathcal{L}_N\).

Let \(x_1 \in \mu_1\) be arbitrary. Then \(x_1 \in \mathcal{L}_N\) such that \(\mu(x_1) \geq t_1\).
\[\implies \mu(x_1) > t_2, \text{ by (1)}. \]
\[\implies x_1 \in \mu_{t_2}. \]
\[\implies \mu_1 \subseteq \mu_{t_2}. \]
Again \(x_2 \in \mu_{t_2} \). Then \(x_2 \in \mathcal{L}_N \) such that \(\mu(x_2) \geq t_2 \).
\[\implies \mu(x_2) > t_3, \text{ by (1)}. \]
\[\implies x_2 \in \mu_{t_3}. \]
\[\implies \mu_2 \subseteq \mu_{t_3}. \]
\[\implies \mu_1 \subseteq \mu_{t_2} \subseteq \mu_{t_3}. \]
Proceeding like this, we get \(\mu_1 \subseteq \mu_{t_2} \subseteq \mu_{t_3} \subseteq \cdots \subseteq \mu_{t_n} = \mathcal{L}_N \).

Theorem 4.6. Two fuzzy \(\ell \)-ideals \(\mu \) and \(\sigma \) of a \(\ell \)-near ring \(\mathcal{L}_N \) whose images are of finite cardinality are equal if and only if \(\text{Im}(\mu) = \text{Im}(\sigma) \) and \(\mathcal{F}_\mu = \mathcal{F}_\sigma \).

Proof:

Given that \(\mu \) and \(\sigma \) are two fuzzy \(\ell \)-ideals of a \(\ell \)-near ring \(\mathcal{L}_N \), whose images are of finite cardinality.

Assume that \(\mu \) and \(\sigma \) are equal. That is \(\mu(x) = \sigma(x) \) for all \(x \in \mathcal{L}_N \).

To prove that \(\text{Im}(\mu) = \text{Im}(\sigma) \) and \(\mathcal{F}_\mu = \mathcal{F}_\sigma \).

Let \(x \in \mathcal{L}_N \) be arbitrary and \(\mu(x) \in \text{Im}(\mu) \).

\[\implies \mu(x) = \sigma(x) \in \text{Im}(\sigma), \text{ by assumption}. \]
\[\implies \mu(x) \in \text{Im}(\sigma). \]
\[\implies \text{Im}(\mu) \subseteq \text{Im}(\sigma). \]

Similarly, \(\text{Im}(\sigma) \subseteq \text{Im}(\mu) \).

Hence \(\text{Im}(\mu) = \text{Im}(\sigma) \).

Let \(\mu_t \in \mathcal{F}_\mu \) be arbitrary and \(t \leq \mu(0) \).

\[\implies x \in \mu_t \text{ such that } \mu(x) \geq t, t \in \text{Im}(\mu). \]
\[\implies \sigma(x) \geq t, \text{ since } \mu(x) = \sigma(x). \]
\[\implies x \in \sigma_t. \]
\[\implies \mu_t \subseteq \sigma_t. \]
Similarly, \(\sigma_i \subseteq \mu_i \).
\[
\implies \mu_i = \sigma_i \in \mathcal{F}_\sigma.
\]
\[
\implies \mathcal{F}_\mu \subseteq \mathcal{F}_\sigma.
\]
Similarly, \(\mathcal{F}_\sigma \subseteq \mathcal{F}_\mu \).

Hence \(\mathcal{F}_\mu = \mathcal{F}_\sigma \).

Conversely, assume that \(\text{Im}(\mu) = \text{Im}(\sigma) \) and \(\mathcal{F}_\mu = \mathcal{F}_\sigma \).

To prove that \(\mu \) and \(\sigma \) are equal.

Suppose that \(\mu(x) \neq \sigma(x) \), for some \(x \in \mathcal{L}_N \).

Then the cardinalities of \(\text{Im}(\mu) \) and \(\text{Im}(\sigma) \) are not equal and \(\mathcal{F}_\mu \neq \mathcal{F}_\sigma \).

Which is a contradiction. Hence \(\mu \) and \(\sigma \) are equal.

Theorem 4.7. If \(\{ \mu_i : i \in \Lambda \} \) is the collection of all fuzzy \(\ell \)-ideals of \(\mathcal{L}_N \), then \(\bigcap_{i \in \Lambda} \mu_i \) is a fuzzy \(\ell \)-ideals of \(\mathcal{L}_N \), where \((\bigcap_{i \in \Lambda} \mu_i)(x) = \inf_{i \in \Lambda} \mu_i(x) \), for all \(x \in \mathcal{L}_N \), where \(\Lambda \) is any index set.

Proof:

Given that \(\{ \mu_i : i \in \Lambda \} \) is the collection of fuzzy \(\ell \)-ideals of \(\mathcal{L}_N \).

To prove that \((\bigcap_{i \in \Lambda} \mu_i)(x) = \inf_{i \in \Lambda} \mu_i(x) \), is a fuzzy \(\ell \)-ideals of \(\mathcal{L}_N \), for all \(x \in \mathcal{L}_N \).

Let \(x, y \in \mathcal{L}_N \) be arbitrary. Then

\[
(\bigcap_{i \in \Lambda} \mu_i)(x - y) = \inf_i (\mu_i(x) - \mu_i(y))
\]
\[
\geq \inf_i (\min_i \mu_i(x), \min_i \mu_i(y))
\]
\[
= \min_i \{ \inf_i \mu_i(x), \inf_i \mu_i(y) \}
\]
\[
= \min_i \{(\cap \mu_i)(x), (\cap \mu_i)(y)\}.
\]

\[
(\bigcap_{i \in \Lambda} \mu_i)(xy) = \inf_i (\mu_i(xy))
\]
\[
\geq \inf_i (\min_i \mu_i(x), \min_i \mu_i(y))
\]
\[
= \min_i \{ \inf_i \mu_i(x), \inf_i \mu_i(y) \}
\]
\[
= \min_i \{(\cap \mu_i)(x), (\cap \mu_i)(y)\}.
\]
\[
(\bigcap_{i \in \Lambda} \mu_i)(x \lor y) = \inf_i (\mu_i(x) \lor \mu_i(y)) \\
\geq \inf_i (\min\{\mu_i(x), \mu_i(y)\}) \\
= \min\{\inf_i \mu_i(x), \inf_i \mu_i(y)\} \\
= \min\{(\bigcap_i \mu_i)(x), (\bigcap_i \mu_i)(y)\}.
\]
\[
(\bigcap_{i \in \Lambda} \mu_i)(x \land y) = \inf_i (\mu_i(x) \land \mu_i(y)) \\
\geq \inf_i (\max\{\mu_i(x), \mu_i(y)\}) \\
= \max\{\inf_i \mu_i(x), \inf_i \mu_i(y)\} \\
= \max\{(\bigcap_i \mu_i)(x), (\bigcap_i \mu_i)(y)\}.
\]
\[
(\bigcap_{i \in \Lambda} \mu_i)(x) = \inf_i (\mu_i(x)) \\
= \inf_i (\mu_i(x + y - y)) \\
= (\bigcap_i \mu_i)(x + y - y).
\]
\[
(\bigcap_{i \in \Lambda} \mu_i)(xy) = \inf_i (\mu_i(xy)) \\
\geq \inf_i (\mu_i(y)) \\
= (\bigcap_i \mu_i)(y).
\]
\[
(\bigcap_{i \in \Lambda} \mu_i)((x + z)y - xy) = \inf_i (\mu_i((x + z)y - xy)) \\
\geq \inf_i (\mu_i(z)) \\
= (\bigcap_i \mu_i)(z).
\]

Hence \(\bigcap_{i \in \Lambda} \mu_i\) is a fuzzy \(\ell\)-ideal of \(\mathcal{L}_N\).

Theorem 4.8. If \(\{\mu_i : i \in \Lambda\}\) is the collection of fuzzy \(\ell\)-ideals of \(\mathcal{L}_N\) such that \(\mu_1 \subseteq \mu_2 \subseteq \cdots \mu_{i-1} \subseteq \mu_i \subseteq \mu_{i+1} \subseteq \cdots\), then \(\bigcup_{i \in \Lambda} \mu_i\) is a fuzzy \(\ell\)-ideal of \(\mathcal{L}_N\).

Proof:

Given that \(\{\mu_i : i \in \Lambda\}\) is the collection of fuzzy \(\ell\)-ideals of \(\mathcal{L}_N\) such that \(\mu_1 \subseteq \mu_2 \subseteq \cdots \mu_{i-1} \subseteq \mu_i \subseteq \mu_{i+1} \subseteq \cdots\).
To prove that $\bigcup_{i \in \Lambda} \mu_i$ is a fuzzy ℓ-ideal of \mathcal{L}_N.

For any $n, m \in \Lambda$, then there exists $i \in \Lambda$ such that $\mu_n(x) \leq \mu_i(x)$ and $\mu_m(y) \leq \mu_i(y)$.

\[\Rightarrow \min\{\mu_n(x), \mu_m(y)\} \leq \min\{\mu_i(x), \mu_i(y)\}. \]

(1)

Since μ_i is a fuzzy ℓ-ideal of \mathcal{L}_N, we have $\mu_i(x - y) \geq \min\{\mu_i(x), \mu_i(y)\}$

(2)

$\mu_i(xy) \geq \min\{\mu_i(x), \mu_i(y)\}$ and

$\mu_i(x \lor y) \geq \min\{\mu_i(x), \mu_i(y)\}$

(3)

(4)

From (1),(2),(3) and (4) we have $\mu_i(x - y) \geq \min\{\mu_n(x), \mu_m(y)\}$.

$\mu_i(xy) \geq \min\{\mu_n(x), \mu_m(y)\}$ and $\mu_i(x \lor y) \geq \min\{\mu_n(x), \mu_m(y)\}$.

Therefore $\min\{(\bigcup_{i \in \Lambda} \mu_i)(x), (\bigcup_{i \in \Lambda} \mu_i)(y)\} = \min\{\sup(\mu_i)(x), \sup(\mu_i)(y)\}$

(5)

\[= \sup(\min\{\mu_i(x), \mu_i(y)\}). \]

But $\min\{(\bigcup_{i \in \Lambda} \mu_i)(x), (\bigcup_{i \in \Lambda} \mu_i)(y)\} \leq \sup(\mu_i(x - y))$

(2) and (5)

$((\bigcup_{i \in \Lambda} \mu_i)(x - y)) \geq \min\{(\bigcup_{i \in \Lambda} \mu_i)(x), (\bigcup_{i \in \Lambda} \mu_i)(y)\}$.

From (3) and (5), we have

\[\min\{(\bigcup_{i \in \Lambda} \mu_i)(x), (\bigcup_{i \in \Lambda} \mu_i)(y)\} = \sup(\min\{\mu_i(x), \mu_i(y)\}) \]

\[\leq \sup(\mu_i(xy)) \]

(2)

$= ((\bigcup_{i \in \Lambda} \mu_i)(xy))$

(2)

$((\bigcup_{i \in \Lambda} \mu_i)(xy)) \geq \min\{(\bigcup_{i \in \Lambda} \mu_i)(x), (\bigcup_{i \in \Lambda} \mu_i)(y)\}$.

From (4) and (5), we have,

\[\min\{(\bigcup_{i \in \Lambda} \mu_i)(x), (\bigcup_{i \in \Lambda} \mu_i)(y)\} = \sup(\min\{\mu_i(x), \mu_i(y)\}) \]

\[\leq \sup(\mu_i(x \lor y)) \]

(2)

$= ((\bigcup_{i \in \Lambda} \mu_i)(x \lor y))$

(2)

From (3) and (5), we have,
\[(\bigcup_{i \in \Lambda} \mu_i)(x \vee y) \geq \min\{\bigcup_{i \in \Lambda} \mu_i(x), (\bigcup_{i \in \Lambda} \mu_i(y)\}\cdot (\bigcup_{i \in \Lambda} \mu_i)(x \wedge y)\]
\[= \sup_{i}(\mu_i)(x \wedge y)\]
\[\geq \sup_{i}\max\{\mu_i(x), \mu_i(y)\}\]
\[= \max\{\sup_{i} \mu_i(x), \sup_{i} \mu_i(y)\}\]
\[= \max\{(\bigcup_{i \in \Lambda} \mu_i)(x), (\bigcup_{i \in \Lambda} \mu_i)(y)\}\].

\[(\bigcup_{i \in \Lambda} \mu_i)(x) = \sup_{i}(\mu_i(x))\]
\[= \sup_{i}(\mu_i(y + x - y))\]
\[= (\bigcup_{i} \mu_i)(y + x - x).\]

\[(\bigcup_{i \in \Lambda} \mu_i)(xy) = \sup_{i}(\mu_i(xy))\]
\[\geq \sup_{i}(\mu_i(y))\]
\[= (\bigcup_{i} \mu_i)(y).\]

\[(\bigcup_{i \in \Lambda} \mu_i)((x + z)y - xy) = \sup_{i}(\mu_i((x + z)y - xy))\]
\[\geq \sup_{i}(\mu_i(z))\]
\[= (\bigcup_{i} \mu_i)(z).\]

Hence \(\bigcup_{i \in \Lambda} \mu_i\) is a fuzzy \(\ell\)-ideal of \(\mathcal{L}_N\).

Theorem 4.9. A \(\ell\)-near ring \(\ell\)-homomorphic preimage of a fuzzy \(\ell\)-ideal is a fuzzy \(\ell\)-ideal of \(\mathcal{L}_N\).

Proof:

Given that \(f : \mathcal{L}_N \to \mathcal{L}'_N\) is a \(\ell\)-near ring \(\ell\)-homomorphism and let \(\nu\) be a fuzzy \(\ell\)-ideal of \(\mathcal{L}'_N\).

To prove that a \(\ell\)-near ring \(\ell\)-homomorphic preimage of a fuzzy \(\ell\)-ideal is a fuzzy \(\ell\)-ideal of \(\mathcal{L}_N\).

\[f^{-1}(\nu(x - y)) = \nu(f(x - y))\]
\[= \nu(f(x) - f(y))\]

68
\[\begin{align*}
\geq & \quad \min\{\nu(f(x)), \nu(f(y))\} \\
& = \min\{f^{-1}(\nu(x)), f^{-1}(\nu(y))\} \\
\end{align*}\]

\[f^{-1}(\nu(xy)) = \nu(f(xy)) = \nu(f(x)f(y)) \geq \min\{\nu(f(x)), \nu(f(y))\} = \min\{f^{-1}(\nu(x)), f^{-1}(\nu(y))\}.\]

\[f^{-1}(\nu(x \lor y)) = \nu(f(x \lor y)) = \nu(f(x) \lor f(y)) \geq \min\{\nu(f(x)), \nu(f(y))\} = \min\{f^{-1}(\nu(x)), f^{-1}(\nu(y))\}.\]

\[f^{-1}(\nu(x \land y)) = \nu(f(x \land y)) = \nu(f(x) \land f(y)) \geq \max\{\nu(f(x)), \nu(f(y))\} = \max\{f^{-1}(\nu(x)), f^{-1}(\nu(y))\}.\]

\[f^{-1}(\nu(y + x - y)) = \nu(f(y + x - y)) = \nu(f(y) + f(x) - f(y)) = \nu(f(x)) = f^{-1}(\nu(x)).\]

\[f^{-1}(\nu(xy)) = \nu(f(xy)) = \nu(f(x)f(y)) \geq \nu(f(y)) = f^{-1}(\nu(y)).\]

\[f^{-1}(\nu((x + i)y - xy)) = \nu(f((x + i)y - xy)) = \nu((f(x) + f(i))f(y) - f(x)f(y))\]

69
\[\geq \nu(f(i)) \]
\[= f^{-1}(\nu(i)). \]

Hence \(\ell \)-near ring \(\ell \)-homomorphic preimage of a fuzzy \(\ell \)-ideal is a fuzzy \(\ell \)-ideal.

Theorem 4.10. The \(\ell \)-homomorphic image of a fuzzy \(\ell \)-ideal of a \(\ell \)-near ring \(\mathcal{L}_N \) having the sup property is a fuzzy \(\ell \)-ideal of \(\mathcal{L}_N \).

Proof:

Given that \(f : \mathcal{L}_N \to \mathcal{L}_N' \) is a \(\ell \)-homomorphism and let \(\mu \) be a fuzzy \(\ell \)-ideal of \(\mathcal{L}_N \) with the sup property and let \(\nu \) be the image of \(\mu \) under \(f \).

To prove \(\nu \) is a fuzzy \(\ell \)-ideal of \(\mathcal{L}_N \).

Given \(f(x), f(y), f(i) \in f(\mathcal{L}_N) \) and let \(x_0 \in f^{-1}(f(x)), y_0 \in f^{-1}(f(y)) \) and \(i_0 \in f^{-1}(f(i)) \) be such that \(\mu(x_0) = \sup_{t \in f^{-1}(f(x))} \mu(t), \mu(y_0) = \sup_{t \in f^{-1}(f(y))} \mu(t) \)
and \(\mu(i_0) = \sup_{t \in f^{-1}(f(i))} \mu(t) \). Then,

\[\nu(f(x) - f(y)) = \sup_{t \in f^{-1}(f(x) - f(y))} \mu(t) \]
\[\geq \mu(x_0 - y_0) \]
\[= \min\{\mu(x_0), \mu(y_0)\} \]
\[= \min\{\sup_{t \in f^{-1}(f(x))} \mu(t), \sup_{t \in f^{-1}(f(y))} \mu(t)\} \]
\[= \min\{\nu(f(x)), \nu(f(y))\}. \]

\[\nu(f(x)f(y)) = \sup_{t \in f^{-1}(f(x)f(y))} \mu(t) \]
\[\geq \mu(x_0y_0) \]
\[= \min\{\mu(x_0), \mu(y_0)\} \]
\[= \min\{\sup_{t \in f^{-1}(f(x))} \mu(t), \sup_{t \in f^{-1}(f(y))} \mu(t)\} \]
\[= \min\{\nu(f(x)), \nu(f(y))\}. \]
\[
\begin{align*}
\nu(f(x) \lor f(y)) &= \sup_{t \in f^{-1}(f(x) \lor f(y))} \mu(t) \\
&\geq \mu(x_0 \lor y_0) \\
&\geq \min\{\mu(x_0), \mu(y_0)\} \\
&= \min\{\sup_{t \in f^{-1}(f(x))} \mu(t), \sup_{t \in f^{-1}(f(y))} \mu(t)\} \\
&= \min\{\nu(f(x)), \nu(f(y))\}
\end{align*}
\]
\[
\begin{align*}
\nu(f(x) \land f(y)) &= \sup_{t \in f^{-1}(f(x) \land f(y))} \mu(t) \\
&\geq \mu(x_0 \land y_0) \\
&\geq \max\{\mu(x_0), \mu(y_0)\} \\
&= \max\{\sup_{t \in f^{-1}(f(x))} \mu(t), \sup_{t \in f^{-1}(f(y))} \mu(t)\} \\
&= \max\{\nu(f(x)), \nu(f(y))\}.
\end{align*}
\]
\[
\begin{align*}
\nu(f(x + y - y)) &= \nu(f(y) + f(x) - f(y)) \\
&= \sup_{t \in f^{-1}(f(y) + f(x) - f(y))} \mu(t) \\
&\geq \mu(y_0 + x_0 - y_0) \\
&= \mu(x_0) \\
&= \nu(f(x)).
\end{align*}
\]
\[
\begin{align*}
\nu(f(xy)) &= \sup_{t \in f^{-1}(f(x)f(y))} \mu(t) \\
&\geq \mu((x_0)(y_0)) \\
&\geq \mu(f(y_0)) \\
&= \sup_{t \in f^{-1}(f(y))} \mu(t) \\
&= \nu(f(y)).
\end{align*}
\]
\[
\begin{align*}
\nu(f((x + i)y - xy)) &= \nu((f(x) + f(i))f(y) - f(x)f(y)) \\
&= \sup_{t \in f^{-1}((f(x) + f(i))f(y) - f(x)f(y))} \mu(t)
\end{align*}
\]
\[\nu((x_0 + i_0)y_0 - x_0y_0)) \geq \nu(i_0) \\
= \sup_{t \in f^{-1}(f(i))} \mu(t) \\
= \nu(f(i)). \]

Hence \(\nu \) is a fuzzy \(\ell \)-ideal of \(\mathcal{L}_N \).

Theorem 4.11. Let \(f : \mathcal{L}_N \to \mathcal{L}'_N \) be a onto \(\ell \)-homomorphism and let \(\mu \) and \(\nu \) be a fuzzy \(\ell \)-ideals of \(\mathcal{L}_N \) and \(\mathcal{L}'_N \) respectively, such that \(\text{Im}(\mu) = \{t_0, t_1, \ldots, t_n\} \) with \(t_0 > t_1 > \ldots t_n \) and \(\text{Im}(\nu) = \{s_0, s_1, \ldots, s_m\} \) with \(s_0 > s_1 > \ldots s_m \). Then,

1. \(\text{Im}(f(\mu)) \subset \text{Im}(\mu) \) and the chain of level \(\ell \)-ideals of \(f(\mu) \) is \(f(\mu_0) \subset f(\mu_1) \subset \ldots \subset f(\mu_n) = \mathcal{L}'_N \);
2. \(\text{Im}(f^{-1}(\nu)) \subset \text{Im}(\nu) \) and the chain of level \(\ell \)-ideals of \(f^{-1}(\nu) \) is \(f^{-1}(\nu_0) \subset f^{-1}(\nu_1) \subset \ldots \subset f^{-1}(\nu_m) = \mathcal{L}_N \).

Proof:

Given that \(f : \mathcal{L}_N \to \mathcal{L}'_N \) is an onto \(\ell \)-homomorphism.

Let \(\mu \) and \(\nu \) be two fuzzy \(\ell \)-ideals of \(\mathcal{L}_N \) and \(\mathcal{L}'_N \) with \(\text{Im}(\mu) = \{t_0, t_1, \ldots, t_n\} \) and \(\text{Im}(\nu) = \{s_0, s_1, \ldots, s_m\} \).

To prove that (1) and (2).

For (1)

Since \((f(\mu))(y) = \sup_{x \in f^{-1}(y)} \mu(x) \), for all \(y \in \mathcal{L}_N \).

Then obviously \(\text{Im}(f(\mu)) \subset \text{Im}(\mu) \) and if for any \(y \in \mathcal{L}_N \), then \(y \in f(\mu_i) \).

\[\iff \text{there exists } x \in f^{-1}(y) \text{ such that } \mu(x) \geq t_i. \]

\[\iff \sup_{z \in f^{-1}(y)} \mu(z) \geq t_i. \]

\[\iff (f(\mu))(y) \geq t_i. \]

72
\[\iff y \in (f(\mu))_{t_i}. \]

Therefore \(f(\mu_{t_i}) = (f(\mu))_{t_i} \), for \(i = 0, 1, 2, \ldots n \) and hence the chain of level \(\ell \)-ideals of \(f(\mu) \) is \(f(\mu_{t_0}) \subset f(\mu_{t_1}) \subset \cdots \subset f(\mu_{t_n}) = \mathcal{L}_N \).

For (2)

Since \(f^{-1}(\nu(x)) = \nu(f(x)) \) for all \(x \in \mathcal{L}_N \) and \(\text{Im} f^{-1}(\nu) = \text{Im}(\nu) \), since \(f \) is onto.

If for all \(x \in \mathcal{L}_N \), then \(x \in f^{-1}(\mu_{s_i}). \)

\[\iff f(x) \in \mu_{s_i}. \]

\[\iff \nu(f(x)) \geq s_i. \]

\[\iff f^{-1}(\nu(x)) \geq s_i. \]

\[\iff x \in (f^{-1}(\nu))_{s_i}. \]

Therefore \(f^{-1}(\nu_{s_i}) = (f^{-1}(\nu))_{s_i}, \) for all \(i = 0, 1, 2, \ldots m \) and hence the chain of level \(\ell \)-ideals of \(f^{-1}(\nu) \) is \(f^{-1}(\nu_{s_0}) \subset f^{-1}(\nu_{s_1}) \subset \cdots \subset f^{-1}(\nu_{s_m}) = \mathcal{L}_N. \)