Chapter 3

Fuzzy sub ℓ-near ring

In this Chapter, the concept of fuzzy sub ℓ-near ring and level sub ℓ-near ring of a ℓ-near ring were introduced and their properties are studied. The characterization theorem of a fuzzy sub ℓ-near ring is presented through the level sub ℓ-near ring, further shown that the family of level sub ℓ-near ring forms a distributive lattice.

To start with,

Definition 3.1. Let μ be a fuzzy subset of a ℓ-near ring L_N. Then μ is called a fuzzy sub ℓ-near ring of L_N, if it satisfy the following:

(i) $\mu(x - y) \geq \min\{\mu(x), \mu(y)\};$

(ii) $\mu(xy) \geq \min\{\mu(x), \mu(y)\};$

(iii) $\mu(x \lor y) \geq \min\{\mu(x), \mu(y)\};$

(iv) $\mu(x \land y) \geq \min\{\mu(x), \mu(y)\}$, for all $x, y \in L_N$.

Example 3.1. Let $L_N = \{(a, b) : a, b \in \mathbb{R}\}$ is a ℓ-near ring, defined as in Example 2.5. We define a fuzzy subset μ on L_N by $\mu((a, b)) = \begin{cases} 1 & \text{if } a \geq 0 \\ \frac{a}{b} & \text{if } a \leq 0 \end{cases}$. Then μ is a fuzzy sub ℓ-near ring of L_N.

26
Note 3.1. Now, let μ be a fuzzy sub ℓ-near ring of a ℓ-near ring \mathcal{L}_N and let $\mu_t = \{x \in \mathcal{L}_N : \mu(x) \geq t\}$ be a level subset of μ. Define the sets $A_t = \{0x : x \in \mu_t\}$ and $A = 0\mathcal{L}_N = \{0n : n \in \mathcal{L}_N\}$.

Proposition 3.1. Let \mathcal{L}_N be a ℓ-near ring. Then the set $A = 0\mathcal{L}_N = \{0n : n \in \mathcal{L}_N\}$ is a sub ℓ-near ring.

Proof:
Given that \mathcal{L}_N is a ℓ-near ring and let $A = 0\mathcal{L}_N = \{0n : n \in \mathcal{L}_N\}$.
To prove that A is a sub ℓ-near ring.
Let $x, y \in A$. Then $x = 0n$ and $y = 0m$.
$\implies x - y = (0n) - (0m) = 0(n - m)$
$x \lor y = (0n) \lor (0m) = 0(n \lor m)$,
$x \land y = (0n) \land (0m) = 0(n \land m)$
$xy = (0n)(0m) = 0(nm)$
$\implies x - y, x \lor y, x \land y, xy \in \mathcal{L}_N$, since \mathcal{L}_N is a ℓ-near ring and as $n, m \in \mathcal{L}_N$.
Hence A is a sub ℓ-near ring.

Proposition 3.2. If μ is a fuzzy sub ℓ-near ring of a ℓ-near ring \mathcal{L}_N, then $\mu(x) \leq \mu(0)$, for all $x \in \mathcal{L}_N$.

Proof:
Given that \mathcal{L}_N is a ℓ-near ring and μ is a fuzzy sub ℓ-near ring.
Let $x \in \mathcal{L}_N$ be arbitrary. Then $0 = x - x$, for all $x \in \mathcal{L}_N$.
$\implies \mu(0) = \mu(x - x) \geq \min\{\mu(x), \mu(x)\}$.
$\implies \mu(0) \geq \mu(x)$.
Thus $\mu(x) \leq \mu(0)$, for all $x \in \mathcal{L}_N$.

Proposition 3.3. If μ is a fuzzy sub ℓ-near ring of a ℓ-near ring \mathcal{L}_N, then $\mu(x) = \mu(-x)$, for all $x \in \mathcal{L}_N$.

27
Proof:
Given that \mathcal{L}_N is a ℓ-near ring and μ is a fuzzy sub ℓ-near ring.
To prove that $\mu(x) = \mu(-x)$, for all $x \in \mathcal{L}_N$.
Let $x \in \mathcal{L}_N$ be arbitrary. Then $-x = 0 - x$, for all $x \in \mathcal{L}_N$.
$\implies \mu(-x) = \mu(0 - x) \geq \min\{\mu(0), \mu(x)\} = \mu(x)$, by proposition 3.2.
$\implies \mu(-x) \geq \mu(x)$ \hspace{1cm} (1).
Again, $\mu(x) = \mu(-(x)) \geq \mu(-x)$, by (1).
$\implies \mu(x) \geq \mu(-x)$.
Hence $\mu(x) = \mu(-x)$, for all $x \in \mathcal{L}_N$.

Proposition 3.4. If μ is a fuzzy sub ℓ-near ring of a ℓ-near ring \mathcal{L}_N, then $\mu(x + y) \geq \min\{\mu(x), \mu(y)\}$, for all $x, y \in \mathcal{L}_N$.

Proof:
Given that \mathcal{L}_N is a ℓ-near ring and μ is a fuzzy sub ℓ-near ring.
To prove that $\mu(x + y) \geq \min\{\mu(x), \mu(y)\}$.
Let $x, y \in \mathcal{L}_N$ be arbitrary.
Now, we take $x + y = x - (-y)$.
$\implies \mu(x + y) = \mu(x - (-y))$
$\quad \geq \min\{\mu(x), \mu(-y)\}$
$\quad = \min\{\mu(x), \mu(y)\}$, by proposition 3.3.
Hence $\mu(x + y) \geq \min\{\mu(x), \mu(y)\}$, for all $x, y \in \mathcal{L}_N$.

Proposition 3.5. Let μ be a fuzzy sub ℓ-near ring of a ℓ-near ring \mathcal{L}_N. If $\mu(x - y) = \mu(0)$, then $\mu(x) = \mu(y)$, where $x, y \in \mathcal{L}_N$.

Proof:
Given that \mathcal{L}_N is a ℓ-near ring and μ is a fuzzy sub ℓ-near ring.
To prove that if $\mu(x - y) = \mu(0)$, then $\mu(x) = \mu(y)$, where $x, y \in \mathcal{L}_N$.
Let $x, y \in \mathcal{L}_N$ be arbitrary. Then,

$$
\mu(x) = \mu(x + (-y + y)) \\
= \mu((x - y) + y) \\
\geq \min\{\mu(x - y), \mu(y)\}, \text{ by proposition 3.4} \\
= \min\{\mu(0), \mu(y)\}, \text{ by assumption} \\
= \mu(y), \text{ by proposition 3.2}
$$

$$
\mu(x) \geq \mu(y).
$$

Again, $\mu(y) = \mu(x - x + y)$

$$
= \mu(x - (x - y)) \\
\geq \min\{\mu(x), \mu(x - y)\} \\
= \min\{\mu(x), \mu(0)\}, \text{ by assumption} \\
= \mu(x), \text{ by proposition 3.2}
$$

$$
\mu(y) \geq \mu(x).
$$

Hence $\mu(x) = \mu(y)$.

Proposition 3.6. Let μ be a fuzzy sub ℓ-near ring of a ℓ-near ring \mathcal{L}_N. Then $\mu(x + y) = \mu(y)$ if and only if $\mu(x) = \mu(0)$, for all $x, y \in \mathcal{L}_N$.

Proof:

Given that μ is a fuzzy sub ℓ-near ring of \mathcal{L}_N.

Assume that $\mu(x + y) = \mu(y)$, for all $x, y \in \mathcal{L}_N$.

To prove that $\mu(x) = \mu(0)$.

Let $x, y \in \mathcal{L}_N$ be arbitrary and as $0 \in \mathcal{L}_N$, then $\mu(x + 0) = \mu(0)$.

Hence $\mu(x) = \mu(0)$.

Conversely, assume that $\mu(x) = \mu(0)$.

To prove that $\mu(x + y) = \mu(y)$.

29
By the proposition 3.4, we have

\[\mu(x + y) \geq \min\{\mu(x), \mu(y)\} \]
\[= \min\{\mu(0), \mu(y)\}, \text{ by assumption} \]
\[= \mu(y), \text{ by proposition 3.2} \]
\[\mu(x + y) \geq \mu(y). \]

Again, \(\mu(y) = \mu((-x + x) + y) \)
\[= \mu(-x + (x + y)) \]
\[\geq \min\{\mu(-x), \mu(x + y)\} \]
\[= \min\{\mu(x), \mu(x + y)\}, \text{ by proposition 3.3} \]
\[= \min\{\mu(0), \mu(x + y)\}, \text{ by assumption} \]
\[= \mu(x + y), \text{ since } x + y \in \mathcal{L}_N \text{ and by proposition 3.2} \]
\[\mu(y) \geq \mu(x + y). \]

Hence \(\mu(x + y) = \mu(y). \)

Proposition 3.7. Let \(\mu \) be a fuzzy sub \(\ell \)-near ring of a \(\ell \)-near ring \(\mathcal{L}_N \). If \(x, y \in \mathcal{L}_N \) and \(\mu(x) < \mu(y) \), then \(\mu(x - y) = \mu(x) \).

Proof:

Given that \(\mathcal{L}_N \) is a \(\ell \)-near ring and \(\mu \) is a fuzzy sub \(\ell \)-near ring.

To prove that if \(\mu(x) < \mu(y) \), then \(\mu(x - y) = \mu(x) \), for all \(x, y \in \mathcal{L}_N \).

Let \(x, y \in \mathcal{L}_N \) be arbitrary and assume that \(\mu(x) < \mu(y) \).

\[\implies \mu(x - y) \geq \min\{\mu(x), \mu(y)\} = \mu(x), \text{ by assumption.} \]
\[\implies \mu(x - y) \geq \mu(x). \quad (1) \]

Again, \(\mu(x) = \mu((x - y) + y) \geq \min\{\mu(x - y), \mu(y)\} = \mu(x - y). \)
\[\implies \mu(x) \geq \mu(x - y). \quad (2) \]

From (1) and (2), we get \(\mu(x) = \mu(x - y) \).

30
Theorem 3.1. Let \(\mu \) and \(\sigma \) be any two fuzzy sub \(\ell \)-near rings of a \(\ell \)-near ring \(\mathcal{L}_N \). If \(x, y \in \mathcal{L}_N, \mu(x) < \sigma(x) \) and \(\mu(y) < \sigma(y) \), then \(\mu(x - y) < \sigma(x - y) \).

Proof:

Given that \(\mu \) and \(\sigma \) are two fuzzy sub \(\ell \)-near rings of a \(\ell \)-near ring \(\mathcal{L}_N \).

Assume that \(\mu(x) < \sigma(x) \) and \(\mu(y) < \sigma(y) \).

To prove that \(\mu(x - y) < \sigma(x - y) \).

Case(i)

Let \(\min\{\mu(x), \mu(y)\} = \mu(x) \) and \(\min\{\sigma(x), \sigma(y)\} = \sigma(x) \).

\[\implies \mu(x) < \mu(y) \text{ and } \sigma(x) < \sigma(y). \]

Then by proposition 3.7, we have \(\mu(x - y) = \mu(x) \) and \(\sigma(x - y) = \sigma(x) \).

Therefore \(\mu(x - y) < \sigma(x - y) \), by (1) and (2).

Case(ii)

Let \(\min\{\mu(x), \mu(y)\} = \mu(y) \) and \(\min\{\sigma(x), \sigma(y)\} = \sigma(y) \).

\[\implies \mu(y) < \mu(x) \text{ and } \sigma(y) < \sigma(x) \]

Then by proposition 3.7, we have \(\mu(x - y) = \mu(y) \) and \(\sigma(x - y) = \sigma(y) \).

Therefore \(\mu(x - y) < \sigma(x - y) \), by (1) and (3).

Case(iii)

Let \(\min\{\mu(x), \mu(y)\} = \mu(x) \) and \(\min\{\sigma(x), \sigma(y)\} = \sigma(y) \).

\[\implies \mu(x) < \mu(y) \text{ and } \sigma(y) < \sigma(x) \]

(4)

Then by proposition 3.7, we have \(\mu(x - y) = \mu(x) \) and \(\sigma(x - y) = \sigma(y) \).

From (4)and (1), we have \(\mu(x) < \mu(y) < \sigma(y) \).

Therefore \(\mu(x - y) < \sigma(x - y) \), by (5) and (6).

Case(iv)

Let \(\min\{\mu(x), \mu(y)\} = \mu(y) \) and \(\min\{\sigma(x), \sigma(y)\} = \sigma(x) \).

\[\implies \mu(y) < \mu(x) \text{ and } \sigma(x) < \sigma(y) \]

(7)

Then by proposition 3.7, we have \(\mu(x - y) = \mu(y) \) and \(\sigma(x - y) = \sigma(x) \).

From (7)and (1), we have \(\mu(y) < \mu(x) < \sigma(x) \).

(8)

From (7)and (1), we have \(\mu(y) < \mu(x) < \sigma(x) \).

(9)
Therefore $\mu(x - y) < \sigma(x - y)$, by (8) and (9).

Theorem 3.2. Let S be any nonempty proper subset of a ℓ-near ring \mathcal{L}_N and let μ be a fuzzy subset on \mathcal{L}_N, defined by $\mu(x) = \begin{cases}
g & \text{if } x \in S \\
h & \text{if } x \in \mathcal{L}_N - S \end{cases}$ where $g, h \in [0, 1]$ with $g > h$. Then μ is a fuzzy sub ℓ-near ring of \mathcal{L}_N if and only if S is a sub ℓ-near ring of \mathcal{L}_N.

Proof:
Given that S is a nonempty proper subset of \mathcal{L}_N and let μ be the fuzzy subset on \mathcal{L}_N defined by $\mu(x) = \begin{cases}
g & \text{if } x \in S \\
h & \text{if } x \in \mathcal{L}_N - S \end{cases}$ where $g, h \in [0, 1]$ with $g > h$.

Assume that μ is a fuzzy sub ℓ-near ring of \mathcal{L}_N.

To prove S is a sub ℓ-near ring of \mathcal{L}_N.

Let $x, y \in S$ be arbitrary. Then $\mu(x) = \mu(y) = g$ and $\min\{\mu(x), \mu(y)\} = g$.

$\implies \mu(x - y), \mu(xy), \mu(x \lor y)$ and $\mu(x \land y)$ are greater than or equal to g.

But μ has only two values g and h with $g > h$.

\implies all the values of $\mu(x - y), \mu(xy), \mu(x \lor y)$ and $\mu(x \land y)$ are equal to g.

$\implies x - y, xy, x \lor y$ and $x \land y$ all are belongs to S.

Hence S is a sub ℓ-near ring of \mathcal{L}_N.

Conversely, assume that S is a sub ℓ-near ring of \mathcal{L}_N.

To prove that μ is a fuzzy sub ℓ-near ring of \mathcal{L}_N.

It is enough to prove that μ satisfies the following axioms:

(i) $\mu(x - y) \geq \min\{\mu(x), \mu(y)\}$;

(ii) $\mu(xy) \geq \min\{\mu(x), \mu(y)\}$;

(iii) $\mu(x \lor y) \geq \min\{\mu(x), \mu(y)\}$;

(iv) $\mu(x \land y) \geq \min\{\mu(x), \mu(y)\}$, for all $x, y \in \mathcal{L}_N$.

32
Let \(x, y \in \mathcal{L}_N \) be arbitrary.

Case(i)

Let \(x, y \in S \). Then \(\mu(x) = g, \mu(y) = g \) and \(\min\{\mu(x), \mu(y)\} = g \).

Since \(S \) is a sub \(\ell \)-near ring, we have \(x - y, xy, x \lor y, x \land y \in S \).

\[
\implies \mu(x - y) = \mu(xy) = \mu(x \lor y) = \mu(x \land y) = g.
\]

\[
\implies \mu(x - y) \geq \min\{\mu(x), \mu(y)\}, \mu(xy) \geq \min\{\mu(x), \mu(y)\},
\]

Thus all the inequalities are satisfied in this case.

Case(ii)

Let \(x, y \in \mathcal{L}_N - S \). Then \(\mu(x) = \mu(y) = h \) and \(\min\{\mu(x), \mu(y)\} = h \).

Here \(x - y, xy, x \lor y, x \land y \) may either belong to \(S \) or to \(\mathcal{L}_N - S \), so their images under \(\mu \) will either be \(g \) or \(h \).

If \(\mu(x - y) = g \), then \(\mu(x - y) = g > h = \min\{\mu(x), \mu(y)\} \geq \min\{\mu(x), \mu(y)\} \).

If \(\mu(xy) = h \), then \(\mu(xy) = h = \min\{\mu(x), \mu(y)\} \geq \min\{\mu(x), \mu(y)\} \).

Thus all the inequalities are satisfied in this case.

Case(iii)

Let \(x, y \in \mathcal{L}_N - S \). Then \(\mu(x) = g, \mu(y) = h \) and \(\min\{\mu(x), \mu(y)\} = h \).

Here \(x - y, xy, x \lor y \) and \(x \land y \) may either belong to \(S \) or to \(\mathcal{L}_N - S \), so their images under \(\mu \) will either be \(g \) or \(h \). By case(ii) all the inequalities are satisfied. Thus \(\mu \) is a fuzzy sub \(\ell \)-near ring of \(\mathcal{L}_N \).

Corollary 3.1. If a nonempty proper subset \(S \) of a \(\ell \)-near ring \(\mathcal{L}_N \) is a sub
\(\ell \)-near ring of \(\mathcal{L}_N \), then \(\lambda_S \) is a fuzzy sub \(\ell \)-near ring,
where \(\lambda_S = \begin{cases}
1 & \text{if } x \in S \\
0 & \text{if } x \in \mathcal{L}_N - S
\end{cases} \) is the characteristic function of \(S \).

Proof:

It follows from the theorem, by taking \(g = 1 \) and \(h = 0 \).

Proposition 3.8. If \(\mu \) and \(\gamma \) are two fuzzy sub \(\ell \)-near rings of \(\mathcal{L}_N \), then \(\mu \cap \gamma \) is a fuzzy sub \(\ell \)-near ring of \(\mathcal{L}_N \).

Proof:

Given that \(\mu \) and \(\gamma \) are two fuzzy sub \(\ell \)-near rings of a \(\ell \)-near ring \(\mathcal{L}_N \).

To prove that \(\mu \cap \gamma \) is a fuzzy sub \(\ell \)-near ring of \(\mathcal{L}_N \).

For any \(x, y \in \mathcal{L}_N \), we have \((\mu \cap \gamma)(x) = \min\{\mu(x), \gamma(x)\} \).

\[
(\mu \cap \gamma)(x - y) = \min\{\mu(x - y), \gamma(x - y)\} \\
\geq \min\{\min\{\mu(x), \mu(y)\}, \min\{\gamma(x), \gamma(y)\}\} \\
= \min\{\min\{\mu(x), \gamma(x)\}, \min\{\mu(y), \gamma(y)\}\} \\
= \min\{(\mu \cap \gamma)(x), (\mu \cap \gamma)(y)\}.
\]

Similarly, we can prove

\[
(\mu \cap \gamma)(xy) \geq \min\{(\mu \cap \gamma)(x), (\mu \cap \gamma)(y)\}. \\
(\mu \cap \gamma)(x \lor y) \geq \min\{(\mu \cap \gamma)(x), (\mu \cap \gamma)(y)\}. \\
(\mu \cap \gamma)(x \land y) \geq \min\{(\mu \cap \gamma)(x), (\mu \cap \gamma)(y)\}.
\]

Thus \(\mu \cap \gamma \) is a fuzzy sub \(\ell \)-near rings of a \(\ell \)-near ring \(\mathcal{L}_N \).

Proposition 3.9. If \(\mu \) is a fuzzy sub \(\ell \)-near ring of \(\mathcal{L}_N \), then each level subset \(\mu_t, t \in \text{Im}(\mu) \) is a sub \(\ell \)-near ring of \(\mathcal{L}_N \).

Proof:

Given that \(\mu \) is a fuzzy sub \(\ell \)-near ring of \(\mathcal{L}_N \).
To prove that each level subset $\mu_t, t \in \text{Im}(\mu)$ is a sub ℓ-near ring of \mathcal{L}_N.
Consider the level subset $\mu_t = \{x \in X : \mu(x) \geq t\}$, where $t \in \text{Im}(\mu)$.
But by proposition 3.1, we have $\mu(x) \leq \mu(0)$, for all $x \in \mathcal{L}_N$.
$\implies \mu(0) \geq t \Rightarrow 0 \in \mu_t$, for all t.
$\implies \mu_t \neq \emptyset$.
Let $x, y \in \mu_t$.
$\implies \mu(x) \geq t, \mu(y) \geq t$ and $\min\{\mu(x), \mu(y)\} \geq t$.
$\implies \mu(x - y) \geq t, \mu(xy) \geq t, \mu(x \lor y) \geq t, \mu(x \land y) \geq t$.
$\implies x - y, xy, x \lor y, x \land y \in \mu_t$.
Hence each level subset $\mu_t, t \in \text{Im}(\mu)$ is a sub ℓ-near ring of \mathcal{L}_N.

Theorem 3.3. Characterization Theorem A fuzzy subset μ of a ℓ-near ring \mathcal{L}_N is a fuzzy sub ℓ-near ring of \mathcal{L}_N if and only if the level subset $\mu_t, t \in \text{Im}(\mu)$ is a sub ℓ-near ring of \mathcal{L}_N.

Proof:
Assume that μ is a fuzzy sub ℓ-near ring of \mathcal{L}_N.
To prove that the level subset $\mu_t, t \in \text{Im}(\mu)$ is a sub ℓ-near ring of \mathcal{L}_N.
This part follows from the proposition 3.9.
Conversely assume that level subset $\mu_t, t \in \text{Im}(\mu)$ is a sub ℓ-near ring of \mathcal{L}_N.
To prove μ is a fuzzy sub ℓ-near ring of \mathcal{L}_N.
Let $\min\{\mu(x), \mu(y)\} = r$.
\implies either $\mu(x) = r$ and $\mu(y) \geq \mu(x) = r$ or $\mu(y) = r$ and $\mu(x) \geq \mu(y) = r$.
$\implies \mu(x) \geq r$ and $\mu(y) \geq r$
$\implies x, y \in \mu_r$.
$\implies x - y, xy, x \lor y, x \land y \in \mu_r$, since μ_r is a sub ℓ-near ring of \mathcal{L}_N.
$\implies \mu(x - y) \geq r, \mu(xy) \geq r, \mu(x \lor y) \geq r, \mu(x \land y) \geq r$.
(1)
Let $\mu(x - y) = r_1$.
(2)
To prove $\mu(x - y) \geq \min\{\mu(x), \mu(y)\}$. That is to prove $r_1 \geq r$.
Suppose $r_1 < r$.

From (2) and (3) we have $\mu(x - y) = r_1 < r \Rightarrow \mu(x - y) < r$.

which is a contradiction to (1). Therefore $r_1 \geq r$.

Hence $\mu(x - y) \geq \min\{\mu(x), \mu(y)\}$.

Similarly, we can prove $\mu(xy) \geq \min\{\mu(x), \mu(y)\}$, $\mu(x \lor y) \geq \min\{\mu(x), \mu(y)\}$; and $\mu(x \land y) \geq \min\{\mu(x), \mu(y)\}$. Thus μ is a fuzzy sub ℓ-near ring of \mathcal{L}_N.

Theorem 3.4. If a nonempty subset A of a ℓ-near ring \mathcal{L}_N is a sub ℓ-near ring of \mathcal{L}_N, then there exists a fuzzy sub ℓ-near ring μ of \mathcal{L}_N such that $\mu_t = A$, for some $t \in [0, 1]$.

Proof:

Assume that a nonempty subset A is a sub ℓ-near ring of a ℓ-near ring \mathcal{L}_N.

To prove that there exists a fuzzy sub ℓ-near ring μ of \mathcal{L}_N such that $\mu_t = A$, for some $t \in [0, 1]$.

Let $t \in [0, 1]$ and define a fuzzy subset μ on \mathcal{L}_N by $\mu(x) = \begin{cases} t & \text{if } x \in A \\ 0 & \text{otherwise.} \end{cases}$

Then clearly $\mu_t = A$.

Now, we prove that μ is a fuzzy sub ℓ-near ring.

It is clear that the level subset μ_t is a sub ℓ-near ring of \mathcal{L}_N.

Hence by the theorem 3.3, μ is a fuzzy sub ℓ-near ring of \mathcal{L}_N.

Definition 3.2. Let μ be any fuzzy sub ℓ-near ring of \mathcal{L}_N, $t \in [0, 1]$ and $t \leq \mu(0)$. Then sub ℓ-near ring μ_t of \mathcal{L}_N is called a level sub ℓ-near ring of μ.

Theorem 3.5. Two level sub ℓ-near rings μ_{t_1} and μ_{t_2} with $t_1 < t_2$ of a fuzzy sub ℓ-near ring μ of \mathcal{L}_N are equal if and only if there is no $x \in \mathcal{L}_N$ such that $t_1 \leq \mu(x) < t_2$.

Proof:

Given that μ_{t_1} and μ_{t_2} are two level sub ℓ-near ring of a fuzzy sub ℓ-near ring
\(\mu \) of a \(\ell \)-near ring \(\mathcal{L}_N \). Assume that \(\mu_1 = \mu_2 \) with \(t_1 < t_2 \).

To prove that there is no \(x \in \mathcal{L}_N \) such that \(t_1 \leq \mu(x) < t_2 \).

Suppose that there is an \(x \in \mathcal{L}_N \) such that \(t_1 \leq \mu(x) < t_2 \).

\[\implies \mu(x) < t_2 \text{ and } \mu(x) \geq t_1. \]

\[\implies x \notin \mu_1 \text{ and } x \in \mu_1. \]

Which is a contradiction to \(\mu_1 = \mu_2 \).

Therefore there is no \(x \in \mathcal{L}_N \) such that \(t_1 \leq \mu(x) < t_2 \).

Conversely assume that there is no \(x \in \mathcal{L}_N \) such that \(t_1 \leq \mu(x) < t_2 \).

To prove that \(\mu_1 \) and \(\mu_2 \) are equal.

Now, \(\mu_1 = \{x \in \mathcal{L}_N : \mu(x) \geq t_1\} \) and \(\mu_2 = \{x \in \mathcal{L}_N : \mu(x) \geq t_2\} \) with \(t_1 < t_2 \). Then clearly \(\mu_2 \subseteq \mu_1 \). It is enough to prove that \(\mu_1 \subseteq \mu_2 \).

Let \(x \in \mu_1 \). Then \(\mu(x) \geq t_1 \).

Suppose that \(\mu(x) < t_2 \). Then \(t_1 \leq \mu(x) < t_2 \).

Which is a contradiction to our assumption, so \(\mu(x) \geq t_2 \).

Thus \(x \in \mu_2 \) and hence \(\mu_1 \subseteq \mu_2 \). Therefore \(\mu_1 \) and \(\mu_2 \) are equal.

Remark 3.1. Let \(\mu \) be any fuzzy sub \(\ell \)-near ring of a \(\ell \)-near ring \(\mathcal{L}_N \). From the theorem 3.3 we have \(\mu_t, t \in \text{Im } \mu \) are level sub \(\ell \)-near rings of \(\mathcal{L}_N \). Then \(\mathcal{F}_\mu = \{\mu_t : t \in \text{Im}(\mu)\} \) is called as the family of level sub \(\ell \)-near rings of \(\mu \).

Theorem 3.6. Let \(\mu \) be any fuzzy sub \(\ell \)-near ring of \(\mathcal{L}_N \) and let \(\mu_{t_1}, \mu_{t_2}, \ldots, \mu_{t_n} \) be the collection of level sub \(\ell \)-near rings of \(\mu \), where \(t_1, t_2, t_3, \ldots, t_n \in \text{Im} (\mu) \).

Then

1. \(\mu_{t_1} \cup \mu_{t_2} \cup \cdots \cup \mu_{t_n} = \{x \in \mathcal{L}_N : \mu(x) \geq \min\{t_1, t_2, \ldots, t_n\}\} \).

2. \(\mu_{t_1} \cap \mu_{t_2} \cap \cdots \cap \mu_{t_n} = \{x \in \mathcal{L}_N : \mu(x) \geq \max\{t_1, t_2, \ldots, t_n\}\} \)

are also level sub \(\ell \)-near rings of \(\mu \).

Proof:

Given that \(\mu \) is a fuzzy sub \(\ell \)-near ring of \(\mathcal{L}_N \) and let \(\mu_{t_1}, \mu_{t_2}, \ldots, \mu_{t_n} \) be the
collection of level sub ℓ-near rings of μ, where $t_1, t_2, t_3, \ldots, t_n \in \text{Im} \ (\mu)$.

To prove that (1) and (2) are level sub ℓ-near ring.

For(1)

Let $x, y \in \mu_{t_1} \cup \mu_{t_2} \cup \cdots \mu_{t_n}$ be arbitrary and let $\min\{t_1, t_2, \ldots, t_n\} = t_i$, for some $i, 1 \leq i \leq n$. Then $x, y \in \mu_{t_i}$ and since μ_{t_i} is a sub ℓ-near ring.

$\Rightarrow x, y \in \mathcal{L}_N$ such that $x - y, xy, x \lor y, x \land y \in \mu_{t_i}$.

$\Rightarrow x, y \in \mathcal{L}_N$ such that $\mu(x - y) \geq t_i, \mu(xy) \geq t_i, \mu(x \lor y) \geq t_i, \mu(x \land y) \geq t_i$.

$\Rightarrow x, y \in \mathcal{L}_N$ such that $\mu(x - y) \geq \min\{t_1, t_2, \ldots, t_n\}, \mu(xy) \geq \min\{t_1, t_2, \ldots, t_n\},$

$\Rightarrow x - y \in \mu_{t_1} \cup \mu_{t_2} \cup \cdots \cup \mu_{t_n}, xy \in \mu_{t_1} \cup \mu_{t_2} \cup \cdots \cup \mu_{t_n}, x \lor y \in \mu_{t_1} \cup \mu_{t_2} \cup \cdots \cup \mu_{t_n},$

$x \land y \in \mu_{t_1} \cup \mu_{t_2} \cup \cdots \cup \mu_{t_n}.$

$\Rightarrow \mu_{t_1} \cup \mu_{t_2} \cup \cdots \cup \mu_{t_n}$ is a level sub ℓ-near ring of \mathcal{L}_N.

Hence $\mu_{t_1} \cup \mu_{t_2} \cup \cdots \cup \mu_{t_n}$ is a level sub ℓ-near ring of μ.

For(2)

Let $x, y \in \mu_{t_1} \cap \mu_{t_2} \cap \cdots \cap \mu_{t_n}$ be arbitrary and let $\max\{t_1, t_2, \ldots, t_n\} = t_j$, for some $j, 1 \leq j \leq n$. Then $x, y \in \mu_{t_j}$ and since μ_{t_j} is a sub ℓ-near ring.

$\Rightarrow x, y \in \mathcal{L}_N$ such that $x - y, xy, x \lor y, x \land y \in \mu_{t_j}$.

$\Rightarrow x, y \in \mathcal{L}_N$ such that $\mu(x - y) \geq t_j, \mu(xy) \geq t_j, \mu(x \lor y) \geq t_j, \mu(x \land y) \geq t_j$.

$\Rightarrow x, y \in \mathcal{L}_N$ such that $\mu(x - y) \geq \max\{t_1, t_2, \ldots, t_n\}, \mu(xy) \geq \max\{t_1, t_2, \ldots, t_n\},$

$\Rightarrow x - y \in \mu_{t_1} \cap \mu_{t_2} \cap \cdots \cap \mu_{t_n}, xy \in \mu_{t_1} \cap \mu_{t_2} \cap \cdots \cap \mu_{t_n}, x \lor y \in \mu_{t_1} \cap \mu_{t_2} \cap \cdots \cap \mu_{t_n},$

$x \land y \in \mu_{t_1} \cap \mu_{t_2} \cap \cdots \cap \mu_{t_n}.$

$\Rightarrow \mu_{t_1} \cap \mu_{t_2} \cap \cdots \cap \mu_{t_n}$ is a level sub ℓ-near ring of \mathcal{L}_N.

Hence $\mu_{t_1} \cap \mu_{t_2} \cap \cdots \cap \mu_{t_n}$ is a level sub ℓ-near ring of μ.

Corollary 3.2. Let μ be any fuzzy sub ℓ-near ring of a ℓ-near ring \mathcal{L}_N. If

$\text{Im} \ (\mu) = \{t_1, t_2, t_3, \ldots, t_n\}$ with $t_1 > t_2 > t_3 > \cdots > t_n$, then $\bigcap_{k=1}^{n} \mu_{t_k} = \mathcal{L}_N$

and $\bigcap_{k=1}^{n} \mu_{t_k} = \mu_{t_1}$.
Theorem 3.7. Let \(\mu \) be any fuzzy sub \(\ell \)-near ring of a \(\ell \)-near ring \(\mathcal{L}_N \). If
\(\text{Im}(\mu) = \{t_1, t_2, t_3, \ldots, t_n\} \) with \(t_1 > t_2 > t_3 > \cdots > t_n \), then we have the
following chain of level \(\ell \)-sub near rings of \(\mu \).
That is \(\mu_1 \subseteq \mu_2 \subseteq \cdots \subseteq \mu_n = \mathcal{L}_N \).

Proof:

Given that \(\mu \) is a fuzzy sub \(\ell \)-near ring of \(\mathcal{L}_N \).
To prove that \(\mu_1 \subseteq \mu_2 \subseteq \cdots \subseteq \mu_n = \mathcal{L}_N \).
Let \(\text{Im}(\mu) = \{t_1, t_2, t_3, \ldots, t_n\} \) with \(t_1 > t_2 > t_3 > \cdots > t_n \). (1)
Let \(x_1 \in \mu_1 \). Then \(x_1 \in \mathcal{L}_N \) such that \(\mu(x_1) \geq t_1 \).
\[\rightarrow \mu(x_1) \geq t_2, \text{ by (1)}. \]
\[\rightarrow x_1 \in \mu_2. \]
\[\rightarrow \mu_1 \subseteq \mu_2. \]
Again \(x_2 \in \mu_2 \). Then \(x_2 \in \mathcal{L}_N \) such that \(\mu(x_2) \geq t_2 \).
\[\rightarrow \mu(x_2) \geq t_3, \text{ by (1)} \]
\[\rightarrow x_2 \in \mu_3. \]
\[\rightarrow \mu_2 \subseteq \mu_3. \]
\[\rightarrow \mu_1 \subseteq \mu_2 \subseteq \mu_3. \]
Proceeding like this, we get \(\mu_1 \subseteq \mu_2 \subseteq \cdots \subseteq \mu_n = \mathcal{L}_N \).

Theorem 3.8. If \(\mu \) is any fuzzy sub \(\ell \)-near ring of a \(\ell \)-near ring \(\mathcal{L}_N \), then
\((\mathcal{F}_\mu, \lor, \land) \) is a distributive lattice, where \(\lor \) and \(\land \) are defined by
\(\mu_i \lor \mu_j = \mu_i \cup \mu_j = \{x \in \mathcal{L}_N : \mu(x) \geq \min\{t_i, t_j\}\} \) and
\(\mu_i \land \mu_j = \mu_i \cap \mu_j = \{x \in \mathcal{L}_N : \mu(x) \geq \max\{t_i, t_j\}\} \), for all \(t_i, t_j \in \text{Im}(\mu) \).

Proof:

Given that \(\mu \) is a fuzzy sub \(\ell \)-near ring of a \(\ell \)-near ring \(\mathcal{L}_N \).
To prove that \((\mathcal{F}_\mu, \lor, \land) \) is a distributive lattice.
Idempotency :
\[\mu_i \lor \mu_i = \{x \in \mathcal{L}_N : \mu(x) \geq \min\{t_i, t_i\}\} \]
\[
\begin{align*}
\mu_i \cap \mu_i & = \{x \in \mathcal{L}_N : \mu(x) \geq t_i\} \\
& = \mu_i. \\
\mu_i \cap \mu_i & = \{x \in \mathcal{L}_N : \mu(x) \geq \max\{t_i, t_i\}\} \\
& = \{x \in \mathcal{L}_N : \mu(x) \geq t_i\} \\
& = \mu_i.
\end{align*}
\]

Associativity:

\[
\begin{align*}
(\mu_i \cup \mu_j) \cup \mu_k & = \{x \in \mathcal{L}_N : \mu(x) \geq \min\{t_i, t_j\}\} \cup \{x \in \mathcal{L}_N : \mu(x) \geq t_k\} \\
& = \{x \in \mathcal{L}_N : \mu(x) \geq \min\{\min\{t_i, t_j\}, t_k\}\} \\
& = \{x \in \mathcal{L}_N : \mu(x) \geq \min\{t_i, t_j, t_k\}\} \\
& = \{x \in \mathcal{L}_N : \mu(x) \geq \min\{t_i, \min\{t_j, t_k\}\}\} \\
& = \{x \in \mathcal{L}_N : \mu(x) \geq t_i\} \cup \{x \in \mathcal{L}_N : \mu(x) \geq \min\{t_j, t_k\}\} \\
& = \mu_i \cup (\mu_j \cup \mu_k).
\end{align*}
\]

\[
\begin{align*}
(\mu_i \cap \mu_j) \cap \mu_k & = \{x \in \mathcal{L}_N : \mu(x) \geq \max\{t_i, t_j\}\} \cap \{x \in \mathcal{L}_N : \mu(x) \geq t_k\} \\
& = \{x \in \mathcal{L}_N : \mu(x) \geq \max\{\max\{t_i, t_j\}, t_k\}\} \\
& = \{x \in \mathcal{L}_N : \mu(x) \geq \max\{t_i, t_j, t_k\}\} \\
& = \{x \in \mathcal{L}_N : \mu(x) \geq \max\{t_i, \max\{t_j, t_k\}\}\} \\
& = \{x \in \mathcal{L}_N : \mu(x) \geq t_i\} \cap \{x \in \mathcal{L}_N : \mu(x) \geq \max\{t_j, t_k\}\} \\
& = \mu_i \cap (\mu_j \cap \mu_k).
\end{align*}
\]

Commutativity:

\[
\begin{align*}
\mu_i \cup \mu_j & = \{x \in \mathcal{L}_N : \mu(x) \geq \min\{t_i, t_j\}\} \\
& = \{x \in \mathcal{L}_N : \mu(x) \geq \min\{t_j, t_i\}\} \\
& = \mu_j \cup \mu_i. \\
\mu_i \cap \mu_j & = \{x \in \mathcal{L}_N : \mu(x) \geq \max\{t_i, t_j\}\} \\
& = \{x \in \mathcal{L}_N : \mu(x) \geq \max\{t_j, t_i\}\} \\
& = \mu_j \cap \mu_i.
\end{align*}
\]

40
Absorption:

\[
\mu_i \cap (\mu_i \cup \mu_j) = \{x \in \mathcal{L}_N : \mu(x) \geq t_i\} \cap \{x \in \mathcal{L}_N : \mu(x) \geq \min\{t_i, t_j\}\} \\
= \{x \in \mathcal{L}_N : \mu(x) \geq \max\{t_i, \min\{t_i, t_j\}\}\} \\
= \{x \in \mathcal{L}_N : \mu(x) \geq t_i\} \\
= \mu_i.
\]

\[
\mu_i \cup (\mu_i \cap \mu_j) = \{x \in \mathcal{L}_N : \mu(x) \geq t_i\} \cup \{x \in \mathcal{L}_N : \mu(x) \geq \max\{t_i, t_j\}\} \\
= \{x \in \mathcal{L}_N : \mu(x) \geq \min\{t_i, \max\{t_i, t_j\}\}\} \\
= \{x \in \mathcal{L}_N : \mu(x) \geq t_i\} \\
= \mu_i.
\]

Distributive:

\[
\mu_i \cup (\mu_j \cap \mu_k) = \mu_i \cap \{x \in \mathcal{L}_N : \mu(x) \geq \max\{t_j, t_k\}\} \\
= \{x \in \mathcal{L}_N : \mu(x) \geq \min\{t_i, \max\{t_j, t_k\}\}\} \\
= \{x \in \mathcal{L}_N : \mu(x) \geq (\min\{t_i, t_j\} \cap \min\{t_i, t_k\})\} \\
= \{x \in \mathcal{L}_N : \mu(x) \geq \min\{t_i, t_j\}\} \cap \{x \in \mathcal{L}_N : \mu(x) \geq \min\{t_i, t_k\}\} \\
= (\mu_i \cup \mu_j) \cap (\mu_i \cup \mu_k).
\]

Hence \((\mathcal{F}_\mu, \lor, \land)\) is a distributive lattice.