CONTENTS

<table>
<thead>
<tr>
<th>Chapter No.</th>
<th>Title</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>GENERAL INTRODUCTION</td>
<td>1-51</td>
</tr>
<tr>
<td>1.1</td>
<td>Introduction</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1.1 Types of solid waste</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>1.1.2 Waste to Energy</td>
<td>4</td>
</tr>
<tr>
<td>1.2</td>
<td>Heavy Metals</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>1.2.1 Occurrence of heavy metals in Environment</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1.2.2 Sources of Heavy Metals</td>
<td>11</td>
</tr>
<tr>
<td>1.3</td>
<td>Impacts of Heavy Metals on Environment and Human</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>1.3.1 Environmental and Health risks</td>
<td>15</td>
</tr>
<tr>
<td>1.4</td>
<td>Technologies to convert waste to energy</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>1.4.1 Physical Technology</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>1.4.2 Thermal Technology</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>1.4.3 Biological Technology</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td>1.4.4 Technology Drives</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>1.4.5 Strategic Drivers</td>
<td>28</td>
</tr>
<tr>
<td>1.5</td>
<td>Analytical instrumentation Techniques</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>1.5.1 Induced Coupled Plasma Atomic Emission</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Spectrometer (ICP-AES)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.5.2 Atomic absorption Spectroscopy</td>
<td>38</td>
</tr>
<tr>
<td>1.6</td>
<td>Scope of work</td>
<td>46</td>
</tr>
<tr>
<td>1.7</td>
<td>Chapter scheme</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>48</td>
</tr>
<tr>
<td>2</td>
<td>ENERGY SOURCES AND ENERGY CONVERSION TECHNOLOGIES</td>
<td>52-93</td>
</tr>
<tr>
<td>2.1</td>
<td>Introduction</td>
<td>52</td>
</tr>
<tr>
<td>2.2</td>
<td>Renewable and non-renewable energy resources</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>2.2.1 Non-renewable energy resources</td>
<td>57</td>
</tr>
<tr>
<td></td>
<td>2.2.2 Renewable energy sources</td>
<td>60</td>
</tr>
</tbody>
</table>
2.3 Health impacts of solid waste 64
2.4 Occupational hazards associated with waste handling 67
2.5 Importance of waste reduction 67
2.6 Key concepts in municipal waste reduction 68
 2.6.1 Composting 70
 2.6.2 The plastic nightmare 71
2.7 Significance of renewable energy 74
 2.7.1 Renewable energy from bio-mass 75
2.8 Conversion Technologies 75
 2.8.1 Description of processing plant 75
2.9 Proposed waste treatment technology 78
 2.9.1 Thermal processing technologies 79
 2.9.2 Biological processing technologies 79
 2.9.3 Physical processing technologies 79
2.10 Power Plant 80
 2.10.1 Power plant components 80
 2.10.2 Fuel analysis 80
 2.10.3 The boiler 81
 2.10.4 Sizing & internals 82
 2.10.5 Economizers 82
 2.10.6 Safety valves 82
 2.10.7 Air pre-heaters 82
 2.10.8 Access 82
 2.10.9 Piping 82
 2.10.10 Ducting 82
 2.10.11 Ash hoppers 83
 2.10.12 Duct hoppers 83
 2.10.13 Ash removal 83
2.11 Boiler auxiliaries 83
 2.11.1 Flue gas system 83
2.11.2 Induced draft fans
2.11.3 Fly ash collection
2.11.4 Combustion air
2.11.5 Forced draft fans
2.11.6 Feed water system
2.11.7 Piping
2.11.8 Deaerator
2.11.9 Feed pumps
2.11.10 Boiler instrumentation and controls

2.12 Turbine and auxiliary
2.12.1 Sizing
2.12.2 Design and constructional details
2.12.3 Oil system
2.12.4 Governing oil system
2.12.5 Condensing system
2.12.6 Air evacuation system
2.12.7 Cranes & Hoist

2.13 Conclusion

References

3. ASSESSMENT OF HEAVY METALS IN SOLID WASTE USED FOR ELECTRICITY GENERATION DURING PRE & POST COMBUSTION IN DIFFERENT SEASONS

3.1 Introduction
3.2 Material and Methods
3.2.1 Waste sampling
3.2.2 Quartering & coning method
3.2.3 Proximate and ultimate analysis of solid waste
3.2.4 Ultimate analysis of solid sample

3.3 Analysis of heavy metals using ICP-AES
3.3.1 Sample preparation procedure

3.4 Result and discussion
3.4.1 Proximate analysis of MSW and RDF
3.4.2 Physical characteristics of municipal solid waste
3.4.3 Municipal waste water analysis
3.4.4 Physical characteristics of fly ash
3.4.5 Gross calorific value of the waste
3.4.6 Heavy metals

3.5 Conclusion

References

4. MONITORING AND ASSESSMENT OF HEAVY METALS IN AGRICULTURE WASTE USED IN COMBUSTION PROCESS

4.1 Introduction

4.2 Literature Review

4.3 Material and Method

4.3.1 Proximate Analysis

4.3.2 Ultimate Analysis

4.4 Analysis of Heavy Metals using ICP-AES

4.4.1 Sample preparation procedure

4.5 Result and Discussion

4.5.1 General Characteristics of Biomass

4.5.2 General Characteristics of mixed discarded seeds

4.5.3 Physical characteristics of biomass ash

4.5.4 Municipal waste water analysis

4.5.5 Heavy metals concentration in different seasons

4.6 Conclusion

References

5. HEAVY METALS MONITORING IN FUELS USED IN POWER PLANTS

5.1 Introduction

5.2 Literature review

5.3 Heavy metals monitoring in fuels
5.3.1 Coal – an age old energy source 139

5.4 Material and method 143
5.4.1 Methods 143
5.4.2 Sample preparation procedure of ICP-AES 147

5.5 Results and discussion 151
5.5.1 Analysis of imported coal 151
5.5.2 Analysis of Indian coal 152
5.5.3 Summer season 153
5.5.4 Winter season 154
5.5.5 Monsoon season 155
5.5.6 Water analysis in different seasons 156

5.6 Impact of coal in the enrichment of gross calorific value 157

5.7 Conclusion 158

Reference 159

6. SUMMARY & CONCLUSION 161-169
6.1 Summary & Conclusion 161
6.2 Future Outlook 169

APPENDIX

List of Publications