CONTENTS

<table>
<thead>
<tr>
<th>Chapter Name</th>
<th>Page No</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHAPTER 1 : INTRODUCTION</td>
<td>1-20</td>
</tr>
<tr>
<td>1.1 Lasers</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Gas Lasers and Review Of Copper Vapour Lasers</td>
<td>2</td>
</tr>
<tr>
<td>1.3 Applications Of Gas Lasers Special Emphasis to CVL</td>
<td>9</td>
</tr>
<tr>
<td>1.4 Aim and Approach Of The Present Work</td>
<td>12</td>
</tr>
<tr>
<td>CHAPTER 2 : BASIC PARAMETERS OF THE DISCHARGE</td>
<td>21-47</td>
</tr>
<tr>
<td>2.1 Discharge Current Pulse Shape</td>
<td>22</td>
</tr>
<tr>
<td>2.1.1 The Gas Temperature</td>
<td>25</td>
</tr>
<tr>
<td>2.1.2 The Electron Temperature</td>
<td>26</td>
</tr>
<tr>
<td>2.1.3 The Resistivity Of The Plasma</td>
<td>27</td>
</tr>
<tr>
<td>2.2 Electron Density</td>
<td>30</td>
</tr>
<tr>
<td>2.2.1 Fractional Abundances Of Different Species</td>
<td>32</td>
</tr>
<tr>
<td>2.3 Energy Level Diagram</td>
<td>33</td>
</tr>
<tr>
<td>2.4 Reactions In The Discharge</td>
<td>34</td>
</tr>
<tr>
<td>2.5 Rate Equation</td>
<td>35</td>
</tr>
<tr>
<td>CHAPTER 3 : ELECTRON COLLISIONS IN THE DISCHARGE</td>
<td>48-90</td>
</tr>
<tr>
<td>3.1 Ionization Processes In The Discharge Tube</td>
<td>49</td>
</tr>
</tbody>
</table>
3.2 Ionization Rate and Rate Coefficients 55
 3.2.1 Penning Ionization Rate Coefficient 58
 3.2.2 Duffenduck Reaction Rate Coefficient 61
 3.2.3 Electron Impact Ionization Rate Coefficient 63
3.3 Recombination Rates and Rate Coefficients 70
 3.3.1 Radiative Recombination Rate 72
 3.3.2 Dielectronic Recombination Rate 75

CHAPTER 4: AMBIPOLAR DIFFUSION IN THE DISCHARGE 91-112
4.1 Collision Parameters 92
 4.1.1 Diffusion Parameters 94
4.2 Ambipolar Diffusion 97
 4.2.1 Diffusion In a Slab 99
 4.2.2 Diffusion In a Cylinder 101
4.3 Radial Distribution Of The α 102
 4.3.1 The Radial Distribution Of The Copper Neutral Atoms 104

CHAPTER 5: ATOM DENSITIES AND ION DENSITIES IN CVL DISCHARGE 113-131

CHAPTER 6: COLLISIONAL PROCESSES RESPONSIBLE FOR EXCITATION AND DEEXCITATION OF LASER STATES 132-167
6.1 Elastic and Inelastic Collisions 132
6.2 Excitation Rates and Rate Coefficients
 6.2.1 Electron Impact Excitation (EIE)
 Rate and Rate Coefficient 137
 6.2.2 Penning Excitation Rate and
 Rate Coefficient 141
 6.2.3 Duffenduck Excitation Rate and
 Rate Coefficient 146

6.3 Electron Impact De-excitation 148
 6.3.1 Excitation and De-excitation Due To
 The Cascading Processes 149

6.4 Output Power From Laser Discharge 150
 6.4.1 Power Due To Contribution Of
 The Penning Process 151
 6.4.2 Power Due To Duffenduck Reaction 153
 6.4.3 Power Due To Electron Impact Excitation 154

CHAPTER 7 : RADIAL DISTRIBUTION OF THE
ATOM AND ION DENSITIES 168-207

7.1 Radial Profiles Of The Densities 174

7.2 Annular Shape Of The Laser Beam 178
 7.2.1 Power Calculations 179
 7.2.2 Total Power Calculation 180

CHAPTER 8 : TEMPORAL DISTRIBUTION OF
THE SPECTRAL EMISSION OF
THE DISCHARGE 208-222
8.1 Temporal Distribution Of Electron Temperature
8.2 Temporal Distribution Of Electron Density
8.3 Temporal Distribution Of The Intensity Of The Laser Plasma

CHAPTER 9: THEORETICAL INVESTIGATION OF THE ANGLE OF DIVERGENCE OF THE LASER BEAM
9.1 Pumping Pulse Approaches
9.1.1 Shorter Pumping Pulse Approach
9.1.2 Longer Pumping Pulse Approach
9.2 Laser Pulse Formation
9.2.1 Laser Pulse Formation In CVL Without Mirror
9.3 Inversion Life Time
9.3.1 Population and Depopulation Of The Laser States
9.4 Variation Of Peak Power Across Laser Beam
9.4.1 Angle Of Divergence Of The Laser Beam
9.5 Results and Discussions

CHAPTER 10: SCOPE OF THE WORK

CHAPTER 11: SUMMARY AND CONCLUSIONS

APPENDIX - I
APPENDIX - II
LIST OF PUBLICATIONS
ERRATA