REFERENCES
REFERENCES

Adams G.D.
The absorption of high energy quanta I.

Alburger D.E.
The absorption of Na24 gamma radiation in lead, copper and aluminum.
Phys. Revs. 73, 4, (1948).

Appoloni C.R. and Rios E.A.
Mass attenuation coefficients of Brazilian soils in the range 10-1450 KeV.

Ban S., Nariyama H., Namito Y., Tanaka S., Nakashima H., Nakane Y., Yoshzawa M. and Nariyama N.
Measurement of the photon energy absorption coefficient for air, nitrogen and argon at 30 KeV.

Berger R.T.
The X or gamma ray energy absorption or transfer coefficient: Tabulation and discussion.

Berger M.J. and Hubbell J.H.
Photon attenuation coefficient.

Bhandal G.S., Singh K., Ram Rama and Vijay Kumar
Energy absorption coefficients for 662 and 1115 KeV gamma rays in some fatty acids.

Bhandal G.S. and Singh K.

Photon attenuation coefficient and effective atomic number study of cement.

Bhandal G.S. and Singh K.

Study of the mass attenuation coefficients and effective atomic numbers in some multielemental materials.

Bhandal G.S. and Singh K.

Effective atomic number studies in different biological samples for partial and total photon interactions in the energy region 10^{-3} to 10^5 MeV.

Bhandal G.S. and Singh K.

Influence of the chemical composition on gamma ray attenuation by fatty acids.

Bradley D.A., Chong C.S., Shukri A., Tajuddin A.A. and Ghose A.M.

A new method for the direct measurement of the energy absorption coefficient of gamma rays.

Bradley D.A., Chong C.S. and Ghose A.M.
Photon absorptiometry of hydrocarbons.

Caiquin Yu., Guozhen Li and Hongxia Bian
Gamma-ray self absorption correction for cylindrical volume sources.

Coppola M. and Reiniger P.
Influence of chemical composition on the gamma ray attenuation by soils.

Cork J.M. and Pidd R.W.
The absorption of gamma radiation in copper and lead.

Cowan C.L.
The absorption of gamma radiation.
Phys. Revs. 74, 12, 1841 (1948).

Cunningham J.R. and John H.E.
Calculation of the average energy absorbed in photon interactions.

Cuykendall T.R.
The absorption of X rays of wavelength $50 < \lambda < 150$ XU by elements of low atomic number
Davisson C.M. and Evans R.D.
Measurements of gamma ray absorption coefficients.

Davisson C.M. and Evans R.D.
Gamma ray absorption coefficients.

Dyk J. Van
Broad beam attenuation of cobalt 60 gamma rays and 6, 18, and 25 MV X rays by lead.

El-Kateb A.H. and Abdual Hamid A.S.
Photon attenuation coefficient study of some materials containing hydrogen, carbon and oxygen.

Fano U.
Gamma ray attenuation, Part-II Analysis of penetration.
Nucleonics 11, 9, 55 (1953).

Ghose A.M.
Sphere transmission method for the measurement of atomic photoelectric cross sections.

Goswami B. and Chaudhari N.
Measurements of gamma rays attenuation coefficients.

Groetzinger G. and Smith L.
Absorption of 2.8 MeV gamma rays in lead.
Grozev P.A., Vapiev E.I. and Botsova L.A.
Energy distribution of beta particles transmitted through an absorber.
Halpern J. and Crane H.R.
The absorption coefficient of 5.8 MeV gamma radiation in aluminum.
Heitler W.
Helme H.R.
Hubbell J.H.
Photon mass attenuation and mass energy absorption coefficients for H, C, N, O, Ar and seven mixtures from 0.1 keV to 20 MeV.
Hubbell J.H.
Photon mass and energy attenuation coefficients from 1 keV to 20 MeV.
Jahagirdar H.A., Hanumaih B. and Thontadarya S.R.
Determination of narrow beam attenuation coefficients from a broad beam geometrical configuration for 320 keV photons.

Total photon attenuation coefficients in alloys and compounds in the energy region 6.4-22.1 keV.

Johnes M.T.
The absorption of ultra - short X rays by elements of high atomic number.

Klein and Nishina
Z. Physik, 52, 853 (1929).

Kruse T.H., Bent R.D. and Lidoofsky I.J.
Gamma radiations of Na23 and Na20.

Mc Daniel B.E.
The absorption of 17 MeV gamma rays in lead and aluminum.

Mudahar G.S. and Satota H.S.
Total and partial mass attenuation coefficients of soil as a function of chemical composition.
Nathuram R., Metha M.K.
Relative transmission of 0.324 and 0.544 MeV positrons and electrons in Be, Al, Cu, Ag and Pb.

Obi F.C.
Attenuation of gamma rays from spherically distributed sources by spherical shell of shielding material.

Parkinson W.C.
Absorption of gamma rays in aluminum.

Z - dependence of photon interactions in multielemental materials.

Peebles G.H. and Plesset M.S.
Transmission of gamma rays through large thickness of heavy materials.
Phys. Revs. 81, 3(A), 430 (1951).

Phillips W.E. and Hopkins J.I.
Study of gamma rays and inner bremsstrahlung transitions in the decay of Tin - 113.

Rakavy G. (1957).
Rama Rao J., Laxminarayana V. and Jnanananda S.
Effective atomic number of alloys for pair production.

Roberts J.E.
Absorption of radium (B+C) gamma rays.

Sastry K. S. R. and Jnanananda S.
Attenuation coefficients for gamma rays from 60Co.

Seltzer S.M.
Calculation of photon mass energy transfer and mass energy absorption coefficients.

Sheline R.K. (1956)

Singh K., Bal H.K., Shal I.K. and Sud S.P.
Measurement of energy absorption coefficients at 662 keV in soil samples.

Tarrant G.T.P.
The absorption of Hard monochromatic gamma radiation Part - II.

Tessler G. and Stephens W.E.
Total gamma absorption in Be9, O16, F19, Al27 at 20 MeV
Tzoar N. and Kelin A.
Absorption of electromagnetic radiation by an electron gas.

Walker R.L.
Absorption of 17.6 MeV gamma rays in C, Al, Cu, Sn and Pb.

White D.R.
An analysis of the impedance of photon and electron interactions.

Zavel'eskii F.S.
Mass attenuation coefficients of radiation in soils and errors measurements made by the method.
LIST OF RESEARCH PUBLICATIONS

1. M.T.Teli, S.S. Malode and L.M. Chaudhari:
 Study of absorption coefficient of 123 kev gamma radiation by dilute solution of Zinc Sulphate.

2. M.T.Teli, L.M. Chaudhari and S.S. Malode:
 Study of absorption of 123 kev gamma radiation by dilute solutions of Magnesium Chloride.

3. M.T.Teli, L.M. Chaudhari and S.S. Malode:
 Attenuation Coefficients of 123 kev gamma radiation by dilute solutions of Sodium Chloride.

4. M.T.Teli and L.M. Chaudhari:
 The attenuation coefficients of 662 kev gamma radiation by dilute solutions of Sodium Chloride.

5. M.T.Teli and L.M. Chaudhari:
 Attenuation coefficients of 123 kev gamma radiation by dilute solutions of Ferrous Sulphate.

6. M.T.Teli and L.M. Chaudhari:
 The attenuation coefficients of Magnesium Chloride for
662 kev gamma radiation, measured by dilute solution.

Nucl. Sci. & Engg. (sent for publication).

7. M.T. Tel1 and L.M. Chaudhari:
The attenuation coefficients of Ammonium Chloride for 662 kev gamma radiation, measured by dilute solution: J. of Phys. Chem. (sent for publication).