iii

LIST OF FIGURES

Fig.1a. Distance of 10 and 100 fathom depth contours from coast line between Nagapattinam and Narsapur.

Fig.1b. Distance of 10 and 100 fathom depth contours from the coast line between Kakinada and Contai.

Fig.2. Bathymetry of Bay of Bengal in fathoms.

Fig.3. Number of cyclonic storms crossed each district along east coast of India during the period 1891-1970 (From India Meteorological Department).

Fig.4. Pressure (mb) and wind (kt) observations near 10.8°N, 84.0°E on 17.11.1977 by ship Jagatswamini.

Fig.5a. Satellite picture of Andhra Cyclone recorded by NOAA at 1600 hrs IST on 17 November 1977.

Fig.5b. Satellite view of Andhra Cyclone at 1550 GMT on 18.11.1977 showing clear 'eye'. The Arabian Sea cyclone is also seen.

Fig.6. View of the Andhra Cyclone as seen by Madras radar at 2116 GMT on 18.11.1977 centred about 200 km north east of Madras.

Fig.7. Hourly observations of wind and pressure at Nellore on 18.11.1977.

Fig.8. Track of Andhra Cyclone 14-20 November 1977.
Fig.9a. Observations of wind (kt) and pressure (mb) at Gannavaran on 19.11.1977.

Fig.9b. Hourly observations of wind (kt) and pressure (mb) at Nasulipatnam and Ongole on 19.11.1977.

Fig.10. Radar track of Andhra Cyclone 17-19 November 1977.

Fig.11. Surface wind (kt.) in different sectors of the cyclone.

Fig.12. 0530 IST position on 15 November 1977.

Fig.13. 0530 IST position on 16 November 1977.

Fig.14. 0530 IST position on 17 November 1977.

Fig.15. 0530 IST position on 18 November 1977.

Fig.16. 0530 IST position on 19 November 1977.

Fig.17. 0530 IST position on 20 November 1977.

Fig.18. Grid used for the cyclone of 14-20 November 1977.

Fig.19. Bathymetry between Madras and Nasulipatnam.

Fig.20. Surge at the landfall between 18.11.1977 to 20.11.1977.

Fig.21a. Tide and surge of Madras from 18-20 November 1977.

Fig.21b. Tide and surge of Visakhapatnam from 18.11.1977 to 20.11.1977.
Satellite view of Hasulipatnam Cyclone at about 0330 G. T on 4 November 1976.

0830 IST position on 4.11.1976.

1730 IST position on 4.11.1976.

Observations of wind (kt) and pressure (mb) at Hasulipatnam on 4 November 1976.

Observations of wind (kt) and pressure (mb) at Gannavaram on 4 November 1976.

Surge at the landfall point between 3.11.1976 to 6.11.1976.

Radar track of severe cyclonic storm 16 November 1976.

Satellite picture of Kavali Cyclone on 16 November 1976 at 1132 IST.

Hourly observations of wind and pressure along south east coast of India on 16.11.1976.

0830 IST position on 16 November 1976.

1730 IST position on 16 November 1976.
Fig. 34. Surge along AB, CW and EF.

Fig. 35. Tide and surge of Madras for the period 15.11.1976 to 17.11.1976.

Fig. 36. Tide and surge of Visakhapatnam for the period 15.11.1976 to 17.11.1976.

Fig. 37. O330 position on 10.9.1976.

Fig. 38. Radar track of severe cyclonic storm 10-11 September 1976.

Fig. 39. Satellite view of Contai Cyclone at about 0300 GMT on 11 September showing the eye of cyclone.

Fig. 40. Hourly observations of wind and pressure at Gangetic Coast from 10.9.1976 to 11.9.1976.

Fig. 41. O330 IST position on 11 September 1976.

Fig. 42. 1730 IST position on 11 September 1976.

Fig. 43. Grid used for the cyclone of 8-19 September 1976.

Fig. 44. Bathymetry between Kakinada and Calcutta.

Fig. 45. Storm surge along AB, CW and EF of 8.9.1976 to 11.9.1976 Contai Cyclone.

Fig. 46. Tide and surge of Sagar Island for the period 8.9.1976 to 11.9.1976.

Fig. 47. Tide and surge of Sagar Island for the period 12.9.1976 to 15.9.1976.
Fig. 48. Tide and surge of Sagar Island for the period 16.9.1976 to 19.9.1976.

Fig. 49. Long term monthly mean sea level variation.

Fig. 50. Long term monthly mean sea level variation from 1937-1964.

Fig. 51. Long term monthly mean sea level variations at Kiddermores harbour from 1881 to 1931.

Fig. 52. Long term monthly mean sea level variation from 1948-1964.

Fig. 53. Long term annual variations along the east coast of India.

Fig. 54. Long term annual variations along the east coast of India (Dublot and Kiddermores).

Fig. 55. Long term annual variations along the east coast of India (Sagar, Diamond Harbour and Calcutta).

Fig. 56. Relation of wind and pressure drop at Nagapatinam.

Fig. 57. Relation of wind and pressure drop at Madras.

Fig. 58. Relation of wind and pressure drop at Vasalapatnam.

Fig. 59. Relation of wind and pressure drop at Visakhapatnam.

Fig. 60. Relation of wind and pressure drop at Paradie.

Fig. 61a. Bathymetry between Nagapatinam and Madras.
Fig. 62. Surge at Nagapattinam for angle of incidence -90°.
Fig. 63. Surge at Madras for angle of incidence -135°.
Fig. 64. Surge at Madras for angle of incidence -90°.
Fig. 65. Surge at Visulipatnam for angle of incidence -135°.
Fig. 66. Surge at Visulipatnam for angle of incidence -90°.
Fig. 67. Surge at Visakhapatnam for angle of incidence -90°.
Fig. 68. Surge at Visakhapatnam for angle of incidence -135°.
Fig. 69. Surge at Paradip for angle of incidence -90°.
Fig. 70. Surge at Paradip for angle of incidence -135°.
Fig. 71. Correction diagram for nomograms.