LIST OF FIGURES

<table>
<thead>
<tr>
<th>FIGURE No.</th>
<th>CAPTION</th>
<th>PAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1</td>
<td>Influence of interfacial behaviour in Polymer Blends</td>
<td>7</td>
</tr>
<tr>
<td>1.2</td>
<td>Schematic diagrams for binary blends showing LCST and UCST behaviour</td>
<td>9</td>
</tr>
<tr>
<td>1.3</td>
<td>Schematic diagram showing location of block and graft copolymers at phase interfaces</td>
<td>10</td>
</tr>
<tr>
<td>1.4</td>
<td>Schematic representation of molten two-phase dispersed polymer blend flowing through a capillary. (a) fibre-like domain; (b) droplet-like domains</td>
<td>19</td>
</tr>
<tr>
<td>1.5</td>
<td>Variables affecting physical and mechanical properties of polymer blends</td>
<td>20</td>
</tr>
<tr>
<td>1.6</td>
<td>Anisotropic units giving rise to liquid crystal phases</td>
<td>24</td>
</tr>
<tr>
<td>1.7</td>
<td>Comparison of three liquid crystal phases (a, b and c) with isotropic state (d)</td>
<td>25</td>
</tr>
<tr>
<td>1.8</td>
<td>Types of liquid crystal polymers</td>
<td>26</td>
</tr>
<tr>
<td>1.9</td>
<td>Commercially available TLCPs</td>
<td>27</td>
</tr>
<tr>
<td>2.1</td>
<td>DSC thermograms of PPS/ PET-OB blends at the heating rate of 20 °C/min.</td>
<td>61</td>
</tr>
<tr>
<td>2.2</td>
<td>Typical DSC thermograms obtained after isothermal crystallisation at various temperatures for one hour: (a) PPS and (b) PPS(70)/PET-OB (30) blend.</td>
<td>63</td>
</tr>
<tr>
<td>2.3</td>
<td>Hoffman-Weeks plots for pure PPS and PPS/PET-OB blends.</td>
<td>65</td>
</tr>
</tbody>
</table>
2.4 DSC crystallisation exotherms of PPS/PET-OB blends at the cooling rate of 20 °C/min.

2.5 Phase diagram of the PPS/PET-OB blend system, showing the equilibrium melting transition (T°m) of PPS and the crystallisation temperatures (Tc) of both PPS and PET-OB, crystal-nematic transition as well as single glass transition temperature (Tg) of PET-OB.

2.6 Optical micrographs (same magnification = 100 X) showing phase behaviour of 70/30 % wt./wt. PPS/PET-OB blend in molten state (at 320 °C).

2.7 Optical micrographs (same magnification, bar 100 X) of the spherulite morphology of PPS in blends with PET-OB at various compositions; (a) pure PPS after 20 min. at 238 °C; (b) 90/10; (c) 80/20 and (d) 70/30 PPS/ PET-OB blends

2.8 SEM micrographs showing morphology of PPS in blends with PET-OB at various compositions. (a) pure PPS (b) 90/10 and (c) 50/50 (wt./wt.) PPS/PET-OB blends.

2.9 DSC thermograms (second heating scan) of melt-mixed and co-precipitated PPS/PET-OB blends at the heating rate 20 °C/min.

2.10 DSC crystallisation exotherms (second cooling scan) of melt-mixed and co-precipitated PPS/PET-OB blends at the cooling rate 20 °C/min.

2.11 Effect of PET-OB content on the degree of crystallinity (α) of PPS phase in both melt-mixed and co-precipitated blends.
2.12 Optical micrographs (same magnification, 100 X) of the phase behaviour and morphology of melt-mixed and co-precipitated PPS/ PET-OB blends at various compositions at 320 °C. Pure PPS: (a), melt-mixed: (b) 70/30 and (d) 50/50 % (wt./wt.), and co-precipitated: (c) 70/30 and (e) 50/50 % (wt./wt.) blends.

2.13 SEM micrographs showing morphology of freeze-fractured samples of melt-mixed [(a).90/10, (c).70/30 & (e).50/50) % (wt./wt.) and co-precipitated [(b).90/10, (d).70/30, & (f).50/50 % (wt./wt.)] PPS/ PET-OB blends. (PET-OB was termed as LCP in micrographs of melt-mixed blends and as PET-OB in micrographs of co-precipitated blends).

CHAPTER 3

3.1 Superimposed plot of six heating cycles showing effect of annealing on Tm in PPS (sample annealed for 5 min. at 320 °C)

3.2 Superimposed plot of six heating cycles showing effect of annealing on Tm in PPS (sample annealed for 10 min. at 320 °C)

3.3 Superimposed plot of six heating cycles showing effect of annealing on Tm in PPS (sample annealed for 20 min. at 320 °C)

3.4 A typical isothermal crystallisation peak at 267 °C.

3.5 Crystallisation isotherm of PPS at temperature 267 °C.

3.6 Avrami plot of PPS at temperature 267 °C.

3.7 The extent of crystallisation vs.time at 267 °C

3.8 D.S.C cooling traces of PPS/ PET-OB blends, recorded at 10 °C/min.

3.9 Fraction of crystallised PPS vs. crystallisation time.
3.10 Fraction of crystallised PPS phase in PPS (90%)/ PET-OB (10%) vs. crystallisation time.

3.11 Ozawa plots of non-isothermal crystallisation for neat PPS.

3.12 Ozawa plots of non-isothermal crystallisation for neat PPS/PET-OB blends.

3.13 Plot of cooling crystallisation function vs. of PPS/PET-OB blends.

3.14 Plot of Avrami exponent [n] vs. temperature of PPS/PET-OB blends.

CHAPTER 4

4.1 Laboratory scale reaction set-up for the synthesis of PPS-PET/OB block copolymer

4.2 A typical optical micrograph of 50/50 (wt./wt. %) PPS-PET/OB (containing 45 mol % OB) block copolymer.

4.3 DSC thermograms (second heating) showing the effect of oxybenzoate content (with respect to the PET content) on the thermal behaviour of block copolymer. (a) Heating scans. (b) Cooling scans.

4.4 X-ray diffraction profiles of 50/50 wt./wt. % PPS-PET/OB block copolymer.

4.5 DSC thermograms (second heating) showing the effect of TLCP content on the thermal behaviour of 50/50 wt./wt. % PPS-PET/OB block copolymer. (a) Heating scans. (b) Cooling scans.

4.6 DSC thermograms (second heating) showing the effect of reaction time content on the thermal behaviour of 50/50 wt./wt. % PPS-PET/OB block copolymer. (a) Heating scans. (b) Cooling scans.

4.7 DSC thermograms (second heating scan) of uncompatibilised and compatibilised PPS/TLCP blends at the heating rate 20 °C/min.
4.8 DSC crystallisation exotherms (second cooling scan) of uncompatibilised and compatibilised PPS/TLCP blends at the cooling rate 20 °C/min.

4.9 Optical micrographs (same magnification, 100 X) of the phase behaviour and morphology of uncompatibilised and compatibilised PPS/PET-OB blends at various compositions at 320 °C. Pure PPS: (a), uncompatibilised: (b) 70/30 and (d) 50/50 % (wt./wt.), and compatibilised: (c) 70/30 and (e) 50/50 % (wt./wt.) blends.

4.10 SEM micrographs showing morphology of freeze-fractured samples of uncompatibilised [(a).90/10, (c).70/30 & (e).50/50 % (wt./wt.) and compatibilised [(b).90/10, (d).70/30, & (f).50/50 % (wt./wt.)] PPS/PET-OB blends

CHAPTER 5

5.1 Torque vs. Time graph for Vectra A950, DCTPPS and (50/50 % w/w) DCTPPS/ Vectra A950 blend.

5.2 IR spectra of pure Vectra A950, DCTPPS and (50/50 % w/w) DCTPPS/TLCP blend.

5.3 DSC curves corresponding to second heating scan of in situ compatilised PPS/Vectra A950/DCTPPS.

5.4 DSC curves corresponding to second cooling scan of in situ compatilised PPS/Vectra A950/DCTPPS.

5.5 Plot of apparent viscosity vs. shear rate showing rheological properties of uncompatibilised and compatibilised PPS/Vectra A 950 blends.

5.6 Polarised light optical microscope photograph showing molten morphology of uncompatibilised and
5.7 SEM micrograph showing skin morphology of uncompatibilised PPS/Vectra A 950 blends: (a) Perpendicular to injection flow direction, skin region; (b) core region of the same specimen; (c) Parallel to injection moulded direction, skin region; (d) Core region of the same specimen.