References

Aronson AI, Shai Y (2001) Why Bacillus thuringiensis insecticidal toxins are so effective: unique features of their mode of action EMS Microbiology Letters 195:1–8
Atsumi S, Inoue Y, Ishizaka T, Mizuno E, Yoshizawa Y, Kitami M, Sato R (2008) Location of Bacillus thuringiensis Cry1Ab(b) protein-binding site on Bacillus thuringiensis Cry1Aa toxin. FEBS J 275:4913–4926
Bajwa WI and Kogan M (2001) Bacillus thuringiensis based biological control of insect pests (http://www.ppc.orst.edu/dir/microbial/bt/)

365

Benfey PN, Ren L, Chua NH (1989) The CaMV35S enhancer contains at least two domains, which can confer different developmental and tissue-specific expression patterns. EMBO J 8:2195–2202

Butaye KMJ, Cammue BPA, Delauré SL, De Bolle MFC (2005) Approaches to minimize variation of transgene expression in plants. Mol Breed 16:79–91

Cao J, Shelton AM, Earle ED (2001) Gene expression and insect resistance in transgenic broccoli containing a Bacillus thuringiensis cry1Ab gene with the chemically inducible PR-1a promoter. Mol Breed 8:207–216

Cao J, Zhao J-Z, Tong JD, Shelton AM, Earle ED (2002) Broccoli plants with pyramided cry1C and cry1Ac Bt gene control diamond-back moth resistance to Cyl1A and Cry1C proteins. Theor Appl Genet 105:258–264

366
Bacillus thuringiensis

Christensen AH, Quail PH (1996) Ubiquitin promoter based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

Christensen AH, Quail PH (1996) Ubiquitin promoter based vectors for high-level expression of selectable and/or screenable marker genes in monocotyledonous plants. Transgenic Res 5:213–218

Connolly ML, Shape (1986) Complementarity at the hemoglobin α1β1 subunit interface. Biopolymers 25:1229–1247

Crickmore N, Ziegler DR, Feitelson J, Schnepf E, Van Rie J, Lereclus D, Baum J, Dean DH (1998) Revision of the nomenclature for the *Bacillus thuringiensis* pesticidal crystal proteins. Microbiol Mol Biol Rev 62:807–813

Crickmore N, Ziegler DR, Schnepf E, Van Rie J, Lereclus D, Baum J, Bravo A, Dean DH (2011) *Bacillus thuringiensis* toxin nomenclature. http://www.lifesci.sussex.ac.uk/home/Neil_Crickmore / Bt/index.html

DNA structure is a large number of transgenic petunias generated by expression of the Bt toxin gene and production of plants. Induction of different tissues of tomato cry1A(b) Bacillus thuringiensis – L, DeRocher EJ, Green PJ (1998) Premature polyadenylation at multiple sites from transgenic petunias generated by Agrobacterium-mediated transformation. Plant Molecular Biology (1996) Problems that can limit the expression of foreign genes in transgenic plants. Gene 16:355–367

Federici AB, Park HW, Bideshi DK (2010) Overview of the basic biology of *Bacillus thuringiensis* with emphasis on genetic engineering of bacterial larvicides for mosquito control. Open Toxinol J 3:83–100

Flavell RB (1994) Inactivation of gene expression in plants as a consequence of specific sequence duplication. Proc Natl Acad Sci, USA 91:3490–3496

Greenplate JT (1999) Quantification of Bacillus thuringiensis insect control protein Cry1Ac over time in Bollgard cotton fruit and terminals. J of Economic Entomology. 92:1377–1383

370
are required – improvements, and alternatives, Blackwell Science.

James C (2012) Global status of commercialized biotech/GM crops. ISAAA Brief No. 44. ISAAA: Ithaca NY
Kawagoe Y, Campbell BR, Murai N (1994) Synergism between CACGTG (G-box) and CACCTG cis elements is required for activation of the bean storage protein β-phaseolin gene. Plant J 5:885–890
Knowles BH, Ellar DJ (1987) Colloid osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis δ-endotoxin with different insect specificities, Biochim Biophys Acta 924:509–518

372
Knowles BH, Knight PJ, Ellar DJ (1991) N-acetyl galactosamine is part of the receptor in insect gut epithelia that recognizes an insecticidal protein from Bacillus thuringiensis. Proc R Soc London B **245**:31–35

Kozak M (1997) Recognition of AUG and alternative initiator codons is augmented by G in position þ4 but is not generally affected by the nucleotides in positions þ5 and þ6. *EMBO J* **16**:2482–2492

Kuhlmeier C (1992) Transcriptional and post-transcriptional regulation of gene expression in plants. Plant Mol Biol **19**:1–14

Kumar H, Kumar V (2004) Tomato expressing Cry1A(b) insecticidal protein from *Bacillus thuringiensis* protected against tomato fruit borer, *Helicoverpa armigera* (Hubner) (*Lepidoptera: Noctuidae*) damage in the laboratory, greenhouse and field. *Crop Prot* **23**:135–139

[PubMed : 7108955]

Leisner SM, Gelvin SB (1988) Structure of the octopine synthase upstream activator sequence. Proc Natl Acad Sci-USA **85**:2533–2557

Luckwill LC (1943) The genus *Lycopersicon*: an historical, biological and taxonomicov survey of the wild and cultivated tomatoes. *Aberdon University Studies* **120**:1–44

373

Mehrotra M, Singh AK, Sanyal I, Altosar A, Amla DV (2011) Pyramiding of modified cry1Ab and cry1Ac genes of Bacillus thuringiensis in transgenic chickpea (Cicer arietinum L.) for improved resistance to pod borer insect Helicoverpa armigera. Euphytica 182(1):87–102

374

375

Rajamohan F, Alzate O, Cotrill JA, Curtiss A, Dean DH (2006) Protein engineering of Bacillus thuringiensis delta-endotoxin: mutations at domain II of Cry1Ab enhance receptor affinity and toxicity toward gypsy moth larvae. Proc Natl Acad Sci 93:14338–14343

Ronald P (2011) Plant genetics, sustainable agriculture and global food security. Genetics 188:11–20

Schnepf HE, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806
Sivasupramaniam S, Kabuye V, Malvar T, Ruschke L, Rahn P, Greenplate J (2000) Hybrid Bacillus thuringiensis delta endotoxins provide enhanced spectrum of activity against Lepidopteran pests. In 33rd Annual Meeting of the Society of Invertebrate Pathology and 5th International Conference on Bacillus thuringiensis (Solter L. and Goettel M., eds). Guanajuato, Mexico, August 13–18 (Abstract)

Srinivasan PM (1959) Control of fruitborer, H. armigera (Hb) on tomato. Indian J Hort 16:187–188

Agrobacterium tumefaciens

van Rie J, Janssen S, Höfte H, Degheele D, van Mellaert H (1990) Receptors on the brush border membrane of the insect midgut as determinants of the specificity of Bacillus thuringiensis delta-endotoxins. Applied and Environmental Microbiology 56:1378–1385

Zhao XM, Xia LQ, Ding XZ, Wang FX (2009) The theoretical three-dimensional structure of Bacillus thuringiensis Cry5Aa and its biological implications, Protein J 28:104–110

380