TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>CHAPTER NO.</th>
<th>TITLE</th>
<th>PAGE NO.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td>LIST OF TABLES</td>
<td>xi</td>
</tr>
<tr>
<td></td>
<td>LIST OF FIGURES</td>
<td>xiv</td>
</tr>
<tr>
<td></td>
<td>LIST OF ABBREVIATIONS</td>
<td>xxii</td>
</tr>
<tr>
<td>1</td>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.1 POWER SYSTEM STABILITY</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>1.2 LITERATURE SURVEY</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.3 INTRODUCTION TO FACTS CONTROLLERS</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>1.4 PROBLEM FORMULATION</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>1.5 ORGANIZATION OF THE THESIS</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>1.6 BENEFITS OF FACTS CONTROLLERS</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>1.7 SUMMARY</td>
<td>13</td>
</tr>
<tr>
<td>2</td>
<td>SMALL SIGNAL AND TRANSIENT STABILITY</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>ANALYSIS OF FACTS DEVICES IN SMIB SYSTEM</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2.1 STABILITY ENHANCEMENT USING SHUNT COMPENSATION</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>2.1.1 Transient Stability Improvement</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>2.2 STABILITY ENHANCEMENT USING SERIES COMPENSATION</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2.2.1 Concept of Series Capacitive Compensation</td>
<td>17</td>
</tr>
<tr>
<td></td>
<td>2.2.2 Improvement of Transient Stability</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>2.3 CHAPTER OUTLINE</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>2.4 POWER ANGLE CURVE</td>
<td>22</td>
</tr>
</tbody>
</table>
2.4.1 Power Angle Curve With and Without Facts Devices 23
2.4.2 Power Angle curve variations in SMIB system with FACTS device 25

2.5 SMALL SIGNAL STABILITY ANALYSIS USING EIGEN VALUE METHOD 31
2.5.1 Small Signal Stability Analysis of SMIB System Without FACTS Devices 36
2.5.2 Small signal stability analysis of SMIB System with FACTS devices 44

2.6 TRANSIENT STABILITY ANALYSIS USING EQUAL AREA CRITERION 51
2.6.1 Equal area criterion for sudden change in load and Three phase fault 53
2.6.2 Application to Sudden Increase in Power Input 53
2.6.3 Application to Three Phase Fault 54

2.7 MATLAB SIMULATION OF SMIB SYSTEM 59
2.7.1 Sudden Increase in Power Input Without FACTS Device 60
2.7.2 Sudden Increase in power input with FACTS device 61
2.7.3 Three Phase Fault Without FACTS Device 67
2.7.4 Three Phase fault with FACTS devices 70
2.7.5 Critical Clearing Time for Mid-Point Fault Using Swing Curve Without FACTS 78
2.7.6 Critical clearing time for mid-point fault using swing curve with FACTS 80
2.7.7 Critical Clearing Time Comparisons for Different FACTS Devices 84
2.8 SUMMARY 85

3 COMPARISON OF SVC AND PSS FOR STABILITY ENHANCEMENT & WEAK BUS IDENTIFICATION IN IEEE 5 BUS SYSTEM 86

3.1 INTRODUCTION 86

3.2 DESCRIPTION OF 3 BUS 2 GENERATOR TEST SYSTEM 89

3.3 SIMULATION OF TEST SYSTEM WITH PSS AND SVC 94

3.4 IEEE 5 BUS LOAD FLOW 106

3.5 VOLTAGE STABILITY INDICES IN IEEE 5 BUS SYSTEM 107

3.5.1 Types of Indices 108

3.5.2 Fast Voltage Stability Index (FVSI) 108

3.6 WEAK BUS IDENTIFICATION USING GA IN IEEE 5 BUS SYSTEM 112

3.7 INTRODUCTION TO OPTIMIZATION 113

3.8 GA FOR OPTIMIZATION 113

3.8.1 Various Operations of GA 114

3.8.2 Proposed Algorithm for GA 119

3.8.3 Proposed Flowchart for GA 120

3.8.4 Problem Statement 120

3.9 GA RESULTS FOR SHUNT COMPENSATION 125

3.10 GA RESULTS FOR SERIES COMPENSATION 128

3.11 SUMMARY 129
4 A COMPARATIVE ANALYSIS OF SVC AND STATCOM FOR VOLTAGE STABILITY ENHANCEMENT 130
 4.1 SVC OPERATING PRINCIPLE AND MODELLING 130
 4.2 STATCOM OPERATING PRINCIPLE AND MODELLING 133
 4.3 COMPARISON OF STATCOM AND SVC 136
 4.4 IEEE 5 BUS SIMULATION IN MATLAB/SIMULINK WITHOUT FACTS DEVICE 137
 4.5 IEEE 5 BUS SIMULATION IN MATLAB/SIMULINK WITH FACTS DEVICE 140
 4.6 COMPARISONS OF SVC AND STATCOM IN IEEE 5 BUS SYSTEM 153
 4.7 SUMMARY 153

5 A COMPARATIVE ANALYSIS OF SSSC AND UPFC FOR POWER FLOW CONTROL IN IEEE 5 BUS SYSTEM 154
 5.1 SSSC WORKING PRINCIPLE AND MODELLING 154
 5.1.1 Power angle Characteristic 157
 5.1.2 Control Range and VA Rating 158
 5.1.3 Immunity to SSR 158
 5.2 UPFC OPERATING PRINCIPLE AND MODELLING 158
 5.2.1 Independent Real and Reactive Power Flow Control 162
 5.3 SSSC SIMULATION IN IEEE 5 BUS SYSTEM USING MATLAB 164
 5.3.1 Power Oscillation Damping 165
 5.3.2 SSSC for Dynamic Power Flow Control 168
 5.4 UPFC SIMULATION IN IEEE 5 BUS SYSTEM USING MATLAB 171
5.5 SUMMARY

6 FUZZY LOGIC CONTROLLER BASED SVC AND STATCOM IN IEEE 5 BUS SYSTEM

6.1 INTRODUCTION

6.2 INTRODUCTION TO FUZZY LOGIC

6.3 FUZZY LOGIC CONTROLLER BASED SVC IN IEEE 5BUS SYSTEM

6.4 FUZZY LOGIC CONTROLLER BASED STATCOM IN IEEE 5BUS SYSTEM

6.5 SUMMARY

7 ANFIS CONTROLLER BASED SVC AND STATCOM IN IEEE 5 BUS SYSTEM

7.1 INTRODUCTION

7.2 ADAPTIVE NEURO FUZZY INFERENCE SYSTEM (ANFIS)

7.3 ANFIS CONTROLLER BASED SVC IMPLEMENTATION IN IEEE 5 BUS SYSTEM

7.4 ANFIS CONTROLLER BASED STATCOM IMPLEMENTATION IN IEEE 5 BUS SYSTEM

7.5 SUMMARY

8 CONCLUSIONS

APPENDIX

REFERENCES

LIST OF PUBLICATIONS