LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Caption</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 2.0</td>
<td>Classification of ceramics based on composition</td>
<td>7</td>
</tr>
<tr>
<td>Figure 2.1</td>
<td>Crystal structure of hexagonal (2H) AlN</td>
<td>10</td>
</tr>
<tr>
<td>Figure 2.2</td>
<td>Change in Gibb’s free energy for different reduction reaction systems like Al_2O_3-NH_3, Al_2O_3-C-NH_3 and Al_2O_3-NH_3-C_3H_8</td>
<td>16</td>
</tr>
<tr>
<td>Figure 2.3</td>
<td>Typical TG-DTA curves of the Al_2O_3 - C mixture in N_2 atmosphere</td>
<td>19</td>
</tr>
<tr>
<td>Figure 2.4</td>
<td>Classification of the current available methods for the production of aluminium nitride powder</td>
<td>21</td>
</tr>
<tr>
<td>Figure 2.5</td>
<td>Schematic of typical Thermal Plasma Torches (a) Transferred DC Plasma Torch, (b) Non-transferred DC Plasma Torch and (c) RF Plasma Torch</td>
<td>23</td>
</tr>
<tr>
<td>Figure 2.6</td>
<td>Overview of applications of thermal plasma</td>
<td>24</td>
</tr>
<tr>
<td>Figure 2.7</td>
<td>Schematic view of spinel structure</td>
<td>29</td>
</tr>
<tr>
<td>Figure 2.8</td>
<td>Commercial AlON blocks and missile domes fabricated by SURMET Corporation, Burlington, USA</td>
<td>32</td>
</tr>
<tr>
<td>Figure 2.9</td>
<td>In-line transmittance of AlON in UV, visible and IR wavelengths</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2.10</td>
<td>Oxidation of AlON at various temperatures as a function of time in air</td>
<td>33</td>
</tr>
<tr>
<td>Figure 2.11</td>
<td>Thermogravimetric analysis (TGA) of γ-AlON in oxygen (32 torr)</td>
<td>34</td>
</tr>
<tr>
<td>Figure 2.12</td>
<td>Phase diagram of the AlN-Al_2O_3 system</td>
<td>37</td>
</tr>
</tbody>
</table>

iv
Chapter – III

Figure 3.1 Photograph of pot type extended arc thermal plasma reactor and plasma arc (50 kW) used for plasma processing 74
Figure 3.2 Schematic of pot type extended arc thermal plasma reactor 74
Figure 3.3 Mixture grinder used for mixing and granule preparation 76
Figure 3.4 Flow diagram of synthesis of fine AlN powder 77
Figure 3.5 Schematic diagram of the AlN decarburization 78
Figure 3.6 Photograph of Inflight Thermal Plasma Reactor and chamber used for synthesis of nano AlN 79
Figure 3.7 Schematic view of In-flight Thermal Plasma reactor used for synthesis of nano AlN 80
Figure 3.8 Ball mill used for homogeneous mixing of raw materials 83
Figure 3.9 Arrangement for sintering of plasma synthesized AlN in extended arc thermal plasma reactor 84
Figure 3.10 Bi-directional glass fiber sheet used for PMC fabrication 86
Figure 3.11 Photograph of LLDPE granules supplied by Reliance Polymer Ltd. 86
Figure 3.12 Characteristics of PUCA 30P (provided by IPMC Ltd. India) 87
Figure 3.13 Schematic diagram of the erosion rig 90
Figure 3.14 Schematic of the device used for the comparison of the thermal conductivity of AlN and Al₂O₃ 97
Figure 3.15 View of (a) Impact meter, (b) schematic view of Impact meter 99
Figure 3.16 Schematic of a typical DSC diagram 100

Chapter – IV

Figure 4.0 Chemical equilibrium diagrams of (a) formation of different species and (b) partial pressure of gases at different
temperature of thermal plasma

Figure 4.1 Change in Gibb’s free energy as a function of temperature for Al-O-C-N-H system

Figure 4.2 Chemical potential of the Al-O-C-N-H-Ar system

Figure 4.3 Schematic model of anticipated cabothermal reduction reaction sequence of alumina in thermal plasma

Figure 4.4 XRD patterns of plasma synthesized powders treated in different ammonia flow rate (a) 0.5, (b) 1, (c) 1.5, and (d) 2 L/min [Plasma parameter: load voltage – 50 V, current – 300 A and time and 25 min respectively]

Figure 4.5 XRD patterns of plasma synthesized powders treated at various load current (a) 150, (b) 200, (c) 250 and (c) 300 A at 2 L/min ammonia flow

Figure 4.6 XRD patterns of the plasma synthesized products at various processing time: (a) 0 min (Al₂O₃ powder), (b) 5 min, (c) 10 min, (d) 15 min, (e) 20 min and (f) 25 min

Figure 4.7 XRD pattern (a) of carbon free plasma synthesized AlN powder and (b) its photograph

Figure 4.8 Weight of recovery of plasma synthesized sample from 50 gm of starting material with different reaction time

Figure 4.9 SEM of (a) raw material alumina and FESEM image of (b) plasma synthesized fine AlN powder and its corresponding EDAX spectrum

Figure 4.10 EPMA micrograph showing Al and O concentration in raw material alumina

Figure 4.11 EPMA micrographs and X ray mapping of plasma synthesized AlN powder synthesized in 25 min

Figure 4.12 Raman spectra of carbon free Plasma synthesized AlN Powder

Figure 4.13 FTIR absorption spectra of plasma synthesized AlN and raw
alumina powder

Figure 4.14 Variation of temperature in AlN and Al₂O₃ powder with time

Figure 4.15 XRD patterns of the plasma synthesized product of different processing time from 5 minute to 30 min N₂ / Ar plasma (using Co target)

Figure 4.16 SEM micrographs of AlN powders synthesized in nitrogen plasma

Figure 4.17 XRD pattern of nano AlN powder obtained from crucible and chamber wall of the reactor

Figure 4.18 Field emission scanning electron microscopy and its corresponding EDAX of plasma synthesized sample obtained from (a) crucible, (b) chamber of the reactor and (c) tip of top electrode

Figure 4.19 TEM image of nano sized AlN powder and its corresponding SAD pattern

Figure 4.20 Electron probe microscopy analysis of nano AlN powder obtained from chamber of the reactor

Figure 4.21 BET surface area plot of plasma synthesized nano AlN powder

Figure 4.22 FTIR absorption spectra of (a) raw alumina, and plasma synthesized powders obtained from (b) crucible, and (c) chamber of the reactor

Figure 4.23 Raman spectroscopy of (a) alumina and plasma synthesized nano powders obtained from (b) crucible and (c) chamber of the reactor

Figure 4.24 XRD of plasma synthesized (a) powder of fused AlON; (b) fine AlN powder and (c) α-Al₂O₃ powder

Figure 4.25 FESEM image of powder of fused AlON powder and its corresponding EDAX

Figure 4.26 EPMA micrograph with X-ray mapping showing the
concentration of Al, N and O in AlON

Figure 4.27 Raman spectra of powder of plasma synthesized fused AlON

Figure 4.28 FTIR spectroscopy of plasma melted AlON spinel

Figure 4.29 Dependence of relative density on Y_2O_3 content in the AlN sintered for 15 min

Figure 4.30 X-ray diffraction pattern of AlN sintered body with different wt% of Y_2O_3 showing AlN as the major crystalline phase, and $Y_3Al_5O_{12}$ (yttrium aluminium garnet) as the minor crystalline phase

Figure 4.31 Scanning electron microscope image of AlN sinter body with Y_2O_3 additive (a) 1, (b) 2, (c) 3, (d) 4 and (e) 5 wt%; (f) nano AlN sintered with 1wt% Y_2O_3 additive

Figure 4.32 EDAX of AlN sintered for 15 min with 5wt% Y_2O_3 sintering additive

Figure 4.33 Variation of density and void fraction in composites with different wt.% of plasma synthesized AlN powder

Figure 4.34 Variation of micro-hardness and Tensile Strength of GFRE Composites filled with different wt% of plasma synthesized AlN powder

Figure 4.35 Variation of erosion rate with impingement angle

Figure 4.36 Schematic of erosion mechanism in ductile mode

Figure 4.37 Effect of control factors on erosion rate (AlN filled composites)

Figure 4.38 FESEM photomicrograph of eroded (a) 10% AlN filled glass - epoxy composite (60° Impingement angle and 75°C temp.) (b) 5% AlN filled glass - epoxy composite (30° Impingement angle and 50°C temp.) (c) & (d) 5% AlN filled glass - epoxy composite (30° Impingement angle and 50°C temp.) surface

Figure 4.39 Microstructure of tensile fractured GFRE composites with (a) 0, (b) 5, (c) 10 and (d) 15 wt% of plasma synthesized AlN
powder

Figure 4.40 Variation of (a) Thermal conductivity and (b) flow of heat in PMC filled with glass fiber and different wt% of plasma synthesized AlN powder

Figure 4.41 TGA curves of neat Epoxy and GFRE composites filled with different wt% of plasma synthesized AlN powder

Figure 4.42 Variation of dielectric breakdown strength of PMC filled with glass fiber and different wt% of plasma synthesized AlN powder

Figure 4.43 Variation of volume resistivity of PMC filled with glass fiber and plasma synthesized AlN powder with different wt.%

Figure 4.44 Effect of AlN weight fraction on tensile strength of LLDPE/AlN composites

Figure 4.45 Effect of AlN fraction on the tensile modulus of LLDPE/AlN composites

Figure 4.46 Effect of AlN fractions on the elongation at break of AlN/LLDPE composites

Figure 4.47 Effect of AlN fraction on the impact strength of the LLDPE/AlN composites

Figure 4.48 DSC melting curves of LLDPE and LLDPE/AlN composites

Figure 4.49 Variation of thermal conductivity with AlN wt%

Figure 4.50 Thermal conductivity of LLDPE/AlN composites as a function of temperature

Figure 4.51 Thermogravimetric analysis of LLDPE filled with different wt% of plasma synthesized AlN

Figure 4.52 Storage modulus versus temperature of LLDPE and composites filled with different weight percentage of plasma synthesized AlN powder

Figure 4.53 Loss modulus versus temperature of LLDPE and composites

x
filled with different weight percentage of plasma synthesized AlN powder

Figure 4.54 Tan δ versus temperature of LLDPE and composites filled with different weight percentage of plasma synthesized AlN powder

Figure 4.55 SEM image of LLDPE filled with (a) 10 wt%, (b) 20 wt% and (c) 30 wt% of plasma synthesized AlN powder

LIST OF TABLES

<table>
<thead>
<tr>
<th>Table No.</th>
<th>Caption</th>
<th>Page No.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 2.0</td>
<td>Properties of AlN</td>
<td>12</td>
</tr>
<tr>
<td>Table 2.1</td>
<td>Thermal and Electrical Properties of AlN and other substrate materials</td>
<td>13</td>
</tr>
<tr>
<td>Table 2.2</td>
<td>Representative Properties of AlON compared with other similar ceramics: (\alpha)-Al(_2)O(_3), AlN and transparent spinel (MgAl(_2)O(_4))</td>
<td>31</td>
</tr>
<tr>
<td>Table 2.3</td>
<td>Sintering mechanisms</td>
<td>40</td>
</tr>
<tr>
<td>Table 2.4</td>
<td>Different paths for transport of matter during the early stage of solid state sintering</td>
<td>42</td>
</tr>
<tr>
<td>Table 2.5</td>
<td>Application of polymer matrix composite</td>
<td>64</td>
</tr>
<tr>
<td>Table 2.6</td>
<td>Properties of E and S type glass fibers</td>
<td>70</td>
</tr>
</tbody>
</table>
Chapter - III

Table 3.1 Typical experimental condition of thermal plasma reactor for the synthesis of fine AlN powder 75

Table 3.2 Properties of alumina and activated carbon used for synthesis of AlN 75

Table 3.3 Specification of Epoxy resin provided by Ciba Geigy Ltd., India 85

Table 3.4 Composition of the composites 87

Table 3.5 Erosion test conditions 91

Table 3.6 Levels of the variables 92

Table 3.7 Orthogonal array for L9 Taguchi Design for composites with Filler content C1, C2 & C3 92

Chapter - IV

Table 4.1 Density and void volume fraction of the PMCs filled with glass fiber and different wt. % of plasma synthesized AlN powder 142

Table 4.2 Signal to Noise ratio (S/N) and erosion rate for different test conditions 148

Table 4.3 Response for Signal to Noise Ratios 148

Table 4.4 Taguchi orthogonal array (L9) and erosion test results for AlN filled composites 149