TABLE OF CONTENTS

Abstract

I. Introduction

I.1. Biology of *Candida albicans*

I.1.1. *C. albicans*, a polymorphic fungus

I.1.2. White-Opaque switching

I.1.3. Mating and Parasexual cycle in *C. albicans*

I.1.4. Chlamydospore formation in *C. albicans*

I.1.5. Other Virulence Factors

I.2. Genome sequence and annotation of *C. albicans* genome

I.3. Genetics of *C. albicans*

I.4. Structure-Function Relationship of bZIP proteins

I.5. Predicting dimer formation: A case study of yeast dimerization network

I.6. YAP family of Transcriptional Regulators

I.7. Iron Homeostasis

I.7.1. Mammalian iron homeostasis

I.7.2. Fungal iron homeostasis

II. General Protocols and Reagents

II.1. Plasmid DNA Isolation

II.2. Bacterial Transformation

II.3. Transformation of *C. albicans*

II.4. Protocol for Genomic DNA Isolation

II.5. Screening of *C. albicans* transformants by PCR assay

II.6. Transformation of *S. cerevisiae*

II.7. Protocol for Cell Lysate Preparation

II.8. Western Blotting Protocol

II.9. Protocol for immunoprecipitation

II.10. Protocol for Total RNA Isolation

II.11. RT-PCR analysis

II.12. Microarray Analysis

II.12.1. RNA purification and Quantitaion

II.12.2. Labeling

II.12.3. Hybridization

II.12.4. Scanning and Data analysis

II.13. Recipes of culture media, common reagents and buffer

II.13.1. Recipe for preparation of growth media

II.13.2. Recipes for making common buffers and reagents
III. Plasmids and Strains

III.1. List of Plasmids 87
III.2. List of Strains 88
III.3. List of Oligonucleotides 89
III.4. Construction of Plasmids for Deletion and Complementation Analyses 93
 III.4.1. CAP2 deletion plasmid construction 93
 III.4.2. CAP3 deletion plasmid construction 95
 III.4.3. CAP2 complementation Plasmid construction 95
III.5. Construction of Epitope-tagged CAP2 plasmids 98
 III.5.1. Construction of the Tet-regulatable CAP2::HA3 plasmid 100
 III.5.2. Construction of Tet-regulatable CAP2 plasmid 100
 III.5.3. Construction of Tet-regulatable CAP2::yEGFP plasmid 100
 III.5.4. Construction of the Tet-regulatable CAP2::Myc13 plasmid 100
 III.5.5. Construction of the Met3p-CAP2::HA3 plasmid 100
 III.5.6. Construction of plasmid for C-terminal 3xHA tagging of CAP2 101
III.6. Construction of recombinant CAP2 and CAP4 expression Plasmids 102
 III.6.1. Construction of GST- and 6xHis- truncated CAP2 102
 III.6.2. Construction of GST- and 6xHis- full length CAP4 102
III.7. Construction of plasmid with cap2A1 allele 103
III.8. Construction of plasmid for CAP2 overexpression in yeast 103
III.9. C. albicans strain Constructions 104
 III.9.1. Construction of cap2A mutant strain 104
 III.9.2. Construction of CAP2 complemented strain 108
 III.9.3. Construction of cap2A cap3A double mutant 109
 III.9.4. Construction of cap2A null mutant in WO-1 strain 111
 III.9.5. Construction of Pter-CAP2 strains 113
 III.9.6. Construction of PMet3-CAP2::HA3 expression strains 114
 III.9.7. Construction of C-terminal 3xHA epitope-tagged CAP2 strains 116
 III.9.9. Construction of cap4Acap4A strains 120
III.10. Bacterial Expression and purification of Cap 2 and Cap4 proteins 121
III.11. Cap2 and Cap4 antibodies 123

IV. Computational Analysis of bZIP Proteins in C. albicans 124-136
IV.1. Identification and Phylogenetic analysis of bZIP domains 124
IV.2. Sequence analysis of the basic region domain 127
IV.3. Sequence analysis of the leucine zipper domain 130
IV.4. A family of four YAP-like proteins in C. albicans genome 133
IV.5. Conclusions and Perspectives 135

V. Molecular Genetic Analysis of CAP Genes 137-162
V.1. Mutational Analysis of CAP4 137
V.2. Construction of C. albicans cap2A null mutant strain 139
V.3. Phenotypic analysis to assess the CAP2 function 143
V.4. cap2A/cap2A strain Showed Altered colony morphology in serum 144
V.5. cap2A cap3A double mutant strain did not confer any obvious phenotype 145
V.6. cap2A mutation did not substantially impair white-opaque switching 146
V.7. CAP2 is required for growth under iron-deprivation conditions 148
V.8. Expression and Functional Characterization of Epitope-tagged CAP2 149
V.9. Genetic suppression of growth defect of *Sc aft1Δ* in iron-deficient medium 151
V.10. *CAP2* expression is upregulated by iron deprivation 153
V.11. Mutational Analysis of HAP4-like domain in *CAP2* 156
V.12. Role of *CAP2* in Virulence 159
V.13. Conclusions and Perspectives 161

VI. Identification of *CAP2* regulons 163-170
VI.1. Identification of *CAP2*-regulated genes by microarray analysis 163
VI.2. Iron-acquisition pathway genes are induced by *CAP2* 165
VI.3. Validation of the microarray data by real-time PCR analysis 168
VI.4. Conclusions and Perspectives 169

VII. Summary and Perspectives 171-173

VIII. References 174-188